BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 23245697)

  • 1. Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase δ.
    Clausen AR; Zhang S; Burgers PM; Lee MY; Kunkel TA
    DNA Repair (Amst); 2013 Feb; 12(2):121-7. PubMed ID: 23245697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases.
    Watt DL; Johansson E; Burgers PM; Kunkel TA
    DNA Repair (Amst); 2011 Aug; 10(8):897-902. PubMed ID: 21703943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency and patterns of ribonucleotide incorporation around autonomously replicating sequences in yeast reveal the division of labor of replicative DNA polymerases.
    Xu P; Storici F
    Nucleic Acids Res; 2021 Oct; 49(18):10542-10557. PubMed ID: 34551434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function analysis of ribonucleotide bypass by B family DNA replicases.
    Clausen AR; Murray MS; Passer AR; Pedersen LC; Kunkel TA
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16802-7. PubMed ID: 24082122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases.
    Nick McElhinny SA; Watts BE; Kumar D; Watt DL; Lundström EB; Burgers PM; Johansson E; Chabes A; Kunkel TA
    Proc Natl Acad Sci U S A; 2010 Mar; 107(11):4949-54. PubMed ID: 20194773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome instability due to ribonucleotide incorporation into DNA.
    Nick McElhinny SA; Kumar D; Clark AB; Watt DL; Watts BE; Lundström EB; Johansson E; Chabes A; Kunkel TA
    Nat Chem Biol; 2010 Oct; 6(10):774-81. PubMed ID: 20729855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ɛ.
    Williams JS; Clausen AR; Nick McElhinny SA; Watts BE; Johansson E; Kunkel TA
    DNA Repair (Amst); 2012 Aug; 11(8):649-56. PubMed ID: 22682724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε.
    Clark AB; Lujan SA; Kissling GE; Kunkel TA
    DNA Repair (Amst); 2011 May; 10(5):476-82. PubMed ID: 21414850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribonucleotide incorporation by yeast DNA polymerase ζ.
    Makarova AV; Nick McElhinny SA; Watts BE; Kunkel TA; Burgers PM
    DNA Repair (Amst); 2014 Jun; 18():63-7. PubMed ID: 24674899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific.
    Williams JS; Clausen AR; Lujan SA; Marjavaara L; Clark AB; Burgers PM; Chabes A; Kunkel TA
    Nat Struct Mol Biol; 2015 Apr; 22(4):291-7. PubMed ID: 25751426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae.
    Donigan KA; Cerritelli SM; McDonald JP; Vaisman A; Crouch RJ; Woodgate R
    DNA Repair (Amst); 2015 Nov; 35():1-12. PubMed ID: 26340535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli.
    Vaisman A; McDonald JP; Noll S; Huston D; Loeb G; Goodman MF; Woodgate R
    Mutat Res; 2014 Mar; 761():21-33. PubMed ID: 24495324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication.
    Zhou ZX; Lujan SA; Burkholder AB; Garbacz MA; Kunkel TA
    Nat Commun; 2019 Sep; 10(1):3992. PubMed ID: 31488849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Activities of DNA Polymerases in Processing Ribonucleotides during DNA Synthesis in Archaea.
    Lemor M; Kong Z; Henry E; Brizard R; Laurent S; Bossé A; Henneke G
    J Mol Biol; 2018 Dec; 430(24):4908-4924. PubMed ID: 30342933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNase H2-initiated ribonucleotide excision repair.
    Sparks JL; Chon H; Cerritelli SM; Kunkel TA; Johansson E; Crouch RJ; Burgers PM
    Mol Cell; 2012 Sep; 47(6):980-6. PubMed ID: 22864116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNases H1 and H2: guardians of the stability of the nuclear genome when supply of dNTPs is limiting for DNA synthesis.
    Cerritelli SM; El Hage A
    Curr Genet; 2020 Dec; 66(6):1073-1084. PubMed ID: 32886170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of RNase H2 in processing ribonucleotides incorporated during DNA replication.
    Williams JS; Gehle DB; Kunkel TA
    DNA Repair (Amst); 2017 May; 53():52-58. PubMed ID: 28325498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans.
    Flood CL; Rodriguez GP; Bao G; Shockley AH; Kow YW; Crouse GF
    PLoS Genet; 2015 Mar; 11(3):e1005049. PubMed ID: 25742645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribonucleotides are signals for mismatch repair of leading-strand replication errors.
    Lujan SA; Williams JS; Clausen AR; Clark AB; Kunkel TA
    Mol Cell; 2013 May; 50(3):437-43. PubMed ID: 23603118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human DNA polymerase ε is able to efficiently extend from multiple consecutive ribonucleotides.
    Göksenin AY; Zahurancik W; LeCompte KG; Taggart DJ; Suo Z; Pursell ZF
    J Biol Chem; 2012 Dec; 287(51):42675-84. PubMed ID: 23093410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.