These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23245904)

  • 1. Comparison of the performance of three ion mobility spectrometers for measurement of biogenic amines.
    Karpas Z; Guamán AV; Pardo A; Marco S
    Anal Chim Acta; 2013 Jan; 758():122-9. PubMed ID: 23245904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosing vaginal infections through measurement of biogenic amines by ion mobility spectrometry.
    Sobel JD; Karpas Z; Lorber A
    Eur J Obstet Gynecol Reprod Biol; 2012 Jul; 163(1):81-4. PubMed ID: 22520996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimising cell temperature and dispersion field strength for the screening for putrescine and cadaverine with thermal desorption-gas chromatography-differential mobility spectrometry.
    Awan MA; Fleet I; Thomas CL
    Anal Chim Acta; 2008 Mar; 611(2):226-32. PubMed ID: 18328325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point-of-care (POC) diagnosis of bacterial vaginosis (BV) using VGTest™ ion mobility spectrometry (IMS) in a routine ambulatory care gynecology clinic.
    Blankenstein T; Lytton SD; Leidl B; Atweh E; Friese K; Mylonas I
    Arch Gynecol Obstet; 2015 Aug; 292(2):355-62. PubMed ID: 25638448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of biogenic amines using corona discharge ion mobility spectrometry.
    Hashemian Z; Mardihallaj A; Khayamian T
    Talanta; 2010 May; 81(3):1081-7. PubMed ID: 20298897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New technology for diagnosis of bacterial vaginosis.
    Chaim W; Karpas Z; Lorber A
    Eur J Obstet Gynecol Reprod Biol; 2003 Nov; 111(1):83-7. PubMed ID: 14557018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive detection of trimethylamine based on dopant-assisted positive photoionization ion mobility spectrometry.
    Cheng S; Li H; Jiang D; Chen C; Zhang T; Li Y; Wang H; Zhou Q; Li H; Tan M
    Talanta; 2017 Jan; 162():398-402. PubMed ID: 27837847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Discharge ion mobility spectrometry of ketonic organic compounds].
    Huang GD; Han HY; Jia XD; Jin SP; Li JQ; Wang HM; Tang XS; Jiang HH; Chu YN; Zhou SK
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 May; 27(5):833-6. PubMed ID: 17655083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an ion mobility spectrometer for use in an atmospheric pressure ionization ion mobility spectrometer/mass spectrometer instrument for fast screening analysis.
    Sysoev A; Adamov A; Viidanoja J; Ketola RA; Kostiainen R; Kotiaho T
    Rapid Commun Mass Spectrom; 2004; 18(24):3131-9. PubMed ID: 15565719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of ripening and storage conditions on the distribution of tyramine, putrescine and cadaverine in Edam-cheese.
    Bunková L; Bunka F; Mantlová G; Cablová A; Sedlácek I; Svec P; Pachlová V; Krácmar S
    Food Microbiol; 2010 Oct; 27(7):880-8. PubMed ID: 20688229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric sensor and LDI-MS detection of biogenic amines in food spoilage based on porous PLA and graphene oxide.
    Siripongpreda T; Siralertmukul K; Rodthongkum N
    Food Chem; 2020 Nov; 329():127165. PubMed ID: 32504919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of choline, putrescine and cadaverine in boletus by ion chromatography with suppressed conductivity detection].
    Lin L; Li R; Wang L; Qiu Y
    Se Pu; 2018 Nov; 36(11):1189-1193. PubMed ID: 30378383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of reactant and analyte ions for ⁶³Nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry.
    Crawford CL; Hill HH
    Talanta; 2013 Mar; 107():225-32. PubMed ID: 23598216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry.
    Waltman MJ; Dwivedi P; Hill HH; Blanchard WC; Ewing RG
    Talanta; 2008 Oct; 77(1):249-55. PubMed ID: 18804628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the ion chemistry for mono-substituted toluenes and anilines by three methods of atmospheric pressure ionization with ion mobility spectrometry.
    Borsdorf H; Neitsch K; Eiceman GA; Stone JA
    Talanta; 2009 Jun; 78(4-5):1464-75. PubMed ID: 19362218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-temperature plasma ionization ion mobility spectrometry.
    Jafari MT
    Anal Chem; 2011 Feb; 83(3):797-803. PubMed ID: 21192661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular ion mobility spectrometer for explosives detection using corona ionization.
    Roscioli KM; Davis E; Siems WF; Mariano A; Su W; Guharay SK; Hill HH
    Anal Chem; 2011 Aug; 83(15):5965-71. PubMed ID: 21682306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrified liquid-liquid interface as an electrochemical tool for the sensing of putrescine and cadaverine.
    Sudalaimani S; Sanjeev Kumar K; Esokkiya A; Suresh C; Giribabu K
    Analyst; 2021 May; 146(10):3208-3215. PubMed ID: 33999050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid phase micro-extraction coupled with ion mobility spectrometry for the analysis of ephedrine in urine.
    Lokhnauth JK; Snow NH
    J Sep Sci; 2005 May; 28(7):612-8. PubMed ID: 15912729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion mobility spectrometry for monitoring diamine oxidase activity.
    Armenta S; Blanco M
    Analyst; 2012 Dec; 137(24):5891-7. PubMed ID: 23108222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.