BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23246519)

  • 1. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production.
    Shi A; Zhu X; Lu J; Zhang X; Ma Y
    Metab Eng; 2013 Mar; 16():1-10. PubMed ID: 23246519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli.
    Bastian S; Liu X; Meyerowitz JT; Snow CD; Chen MM; Arnold FH
    Metab Eng; 2011 May; 13(3):345-52. PubMed ID: 21515217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis.
    Qi H; Li S; Zhao S; Huang D; Xia M; Wen J
    PLoS One; 2014; 9(4):e93815. PubMed ID: 24705866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway.
    Liu Z; Liu P; Xiao D; Zhang X
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):851-60. PubMed ID: 26946319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB.
    Yamauchi Y; Hirasawa T; Nishii M; Furusawa C; Shimizu H
    J Gen Appl Microbiol; 2014; 60(3):112-8. PubMed ID: 25008167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance.
    Matsuda F; Ishii J; Kondo T; Ida K; Tezuka H; Kondo A
    Microb Cell Fact; 2013 Dec; 12():119. PubMed ID: 24305546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z
    Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production.
    Trinh CT
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):1083-94. PubMed ID: 22678028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating redox metabolism to improve isobutanol production in Shimwellia blattae.
    Acedos MG; de la Torre I; Santos VE; García-Ochoa F; García JL; Galán B
    Biotechnol Biofuels; 2021 Jan; 14(1):8. PubMed ID: 33407735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli.
    Zhou L; Zhu Y; Yuan Z; Liu G; Sun Z; Du S; Liu H; Li Y; Liu H; Zhou Z
    Appl Environ Microbiol; 2022 Sep; 88(17):e0097622. PubMed ID: 35980178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling.
    Armingol E; Tobar E; Cabrera R
    PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corynebacterium glutamicum tailored for efficient isobutanol production.
    Blombach B; Riester T; Wieschalka S; Ziert C; Youn JW; Wendisch VF; Eikmanns BJ
    Appl Environ Microbiol; 2011 May; 77(10):3300-10. PubMed ID: 21441331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.
    Cui YY; Ling C; Zhang YY; Huang J; Liu JZ
    Microb Cell Fact; 2014 Feb; 13():21. PubMed ID: 24512078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct transcriptional regulation of the two Escherichia coli transhydrogenases PntAB and UdhA.
    Haverkorn van Rijsewijk BRB; Kochanowski K; Heinemann M; Sauer U
    Microbiology (Reading); 2016 Sep; 162(9):1672-1679. PubMed ID: 27488847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.
    Trinh CT; Li J; Blanch HW; Clark DS
    Appl Environ Microbiol; 2011 Jul; 77(14):4894-904. PubMed ID: 21642415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli.
    Sauer U; Canonaco F; Heri S; Perrenoud A; Fischer E
    J Biol Chem; 2004 Feb; 279(8):6613-9. PubMed ID: 14660605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural.
    Seo HM; Jeon JM; Lee JH; Song HS; Joo HB; Park SH; Choi KY; Kim YH; Park K; Ahn J; Lee H; Yang YH
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):37-44. PubMed ID: 26660478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli.
    Zhu X; Tan Z; Xu H; Chen J; Tang J; Zhang X
    Metab Eng; 2014 Jul; 24():87-96. PubMed ID: 24831708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli.
    Jan J; Martinez I; Wang Y; Bennett GN; San KY
    Biotechnol Prog; 2013; 29(5):1124-30. PubMed ID: 23794523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved cell growth and biosynthesis of glycolic acid by overexpression of membrane-bound pyridine nucleotide transhydrogenase.
    Cabulong RB; Valdehuesa KNG; Bañares AB; Ramos KRM; Nisola GM; Lee WK; Chung WJ
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):159-169. PubMed ID: 30554290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.