BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23246524)

  • 21. Improvement of Chalcone Synthase Activity and High-Efficiency Fermentative Production of (2
    Tong Y; Li N; Zhou S; Zhang L; Xu S; Zhou J
    ACS Synth Biol; 2024 May; 13(5):1454-1466. PubMed ID: 38662928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae.
    Jiang H; Wood KV; Morgan JA
    Appl Environ Microbiol; 2005 Jun; 71(6):2962-9. PubMed ID: 15932991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis.
    Lv Y; Marsafari M; Koffas M; Zhou J; Xu P
    ACS Synth Biol; 2019 Nov; 8(11):2514-2523. PubMed ID: 31622552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Layered dynamic regulation for improving metabolic pathway productivity in
    Doong SJ; Gupta A; Prather KLJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2964-2969. PubMed ID: 29507236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli.
    Miyahisa I; Funa N; Ohnishi Y; Martens S; Moriguchi T; Horinouchi S
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):53-8. PubMed ID: 16133333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli.
    Liang JL; Guo LQ; Lin JF; He ZQ; Cai FJ; Chen JF
    World J Microbiol Biotechnol; 2016 Jun; 32(6):102. PubMed ID: 27116968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic Engineering of Escherichia coli for Production of 2-Phenylethanol and 2-Phenylethyl Acetate from Glucose.
    Guo D; Zhang L; Kong S; Liu Z; Li X; Pan H
    J Agric Food Chem; 2018 Jun; 66(23):5886-5891. PubMed ID: 29808680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and Assembly of a Biofactory for (2
    Parra Daza LE; Suarez Medina L; Tafur Rangel AE; Fernández-Niño M; Mejía-Manzano LA; González-Valdez J; Reyes LH; González Barrios AF
    Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of a novel anaerobic pathway in Escherichia coli for propionate production.
    Li J; Zhu X; Chen J; Zhao D; Zhang X; Bi C
    BMC Biotechnol; 2017 Apr; 17(1):38. PubMed ID: 28407739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy.
    Zhou S; Lyu Y; Li H; Koffas MAG; Zhou J
    Biotechnol Bioeng; 2019 Jun; 116(6):1392-1404. PubMed ID: 30684358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in
    Zhou S; Hao T; Zhou J
    J Microbiol Biotechnol; 2020 Oct; 30(10):1574-1582. PubMed ID: 32830192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of different approaches to activate the glyoxylate bypass in Escherichia coli K-12 for succinate biosynthesis during dual-phase fermentation in minimal glucose media.
    Skorokhodova AY; Gulevich AY; Morzhakova AA; Shakulov RS; Debabov VG
    Biotechnol Lett; 2013 Apr; 35(4):577-83. PubMed ID: 23208454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of Escherichia coli for the production of cinnamaldehyde.
    Bang HB; Lee YH; Kim SC; Sung CK; Jeong KJ
    Microb Cell Fact; 2016 Jan; 15():16. PubMed ID: 26785776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering
    Dunstan MS; Robinson CJ; Jervis AJ; Yan C; Carbonell P; Hollywood KA; Currin A; Swainston N; Feuvre RL; Micklefield J; Faulon JL; Breitling R; Turner N; Takano E; Scrutton NS
    Synth Biol (Oxf); 2020; 5(1):ysaa012. PubMed ID: 33195815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.
    Lin Y; Sun X; Yuan Q; Yan Y
    Metab Eng; 2014 May; 23():62-9. PubMed ID: 24583236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy.
    Liu H; Fang G; Wu H; Li Z; Ye Q
    Biotechnol J; 2018 May; 13(5):e1700695. PubMed ID: 29405609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering co-culture system for production of apigetrin in Escherichia coli.
    Thuan NH; Chaudhary AK; Van Cuong D; Cuong NX
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):175-185. PubMed ID: 29362971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway.
    Mehrer CR; Incha MR; Politz MC; Pfleger BF
    Metab Eng; 2018 Jul; 48():63-71. PubMed ID: 29807110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Advance in flavonoids biosynthetic pathway and synthetic biology].
    Zou LQ; Wang CX; Kuang XJ; Li Y; Sun C
    Zhongguo Zhong Yao Za Zhi; 2016 Nov; 41(22):4124-4128. PubMed ID: 28933077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.