These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 23246941)

  • 1. A comparative study on the uptake and translocation of organochlorines by Phragmites australis.
    San Miguel A; Ravanel P; Raveton M
    J Hazard Mater; 2013 Jan; 244-245():60-9. PubMed ID: 23246941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration responses to organochlorines in Phragmites australis.
    Faure M; San Miguel A; Ravanel P; Raveton M
    Environ Pollut; 2012 May; 164():188-94. PubMed ID: 22366347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of phase II detoxification enzymes in Phragmites australis plants exposed to organochlorines.
    San Miguel A; Schröder P; Harpaintner R; Gaude T; Ravanel P; Raveton M
    Environ Sci Pollut Res Int; 2013 May; 20(5):3464-71. PubMed ID: 23179212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel dual-compartment, continuous-flow wetland microcosm to assess cis-dichloroethene removal from the rhizosphere.
    Tawney I; Becker JG; Baldwin AH
    Int J Phytoremediation; 2008; 10(5):455-71. PubMed ID: 19260226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroponic uptake and distribution of nitrobenzene in Phragmites australis: potential for phytoremediation.
    Song Y; Song C; Ju S; Chai J; Guo J; Zhao Q
    Int J Phytoremediation; 2010 Mar; 12(3):217-25. PubMed ID: 20734617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of the physiochemical properties of chlorinated solvents on the sorption of trichloroethylene to the roots of Typha latifolia.
    Ma X; Wang C
    Environ Pollut; 2009 Mar; 157(3):1019-23. PubMed ID: 19013701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis.
    Lv T; Carvalho PN; Casas ME; Bollmann UE; Arias CA; Brix H; Bester K
    Environ Pollut; 2017 Oct; 229():362-370. PubMed ID: 28609737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of solubility in lipid on bioconcentration of hydrophobic compounds.
    Chessells M; Hawker DW; Connell DW
    Ecotoxicol Environ Saf; 1992 Jun; 23(3):260-73. PubMed ID: 1376231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of vegetation in pilot-scale horizontal subsurface flow constructed wetlands treating sulphate rich groundwater contaminated with a low and high chlorinated hydrocarbon.
    Chen Z; Wu S; Braeckevelt M; Paschke H; Kästner M; Köser H; Kuschk P
    Chemosphere; 2012 Oct; 89(6):724-31. PubMed ID: 22832338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake pathways of chlorobenzenes in plants and their correlation with N-octanol/water partition coefficients.
    Scheunert I; Topp E; Attar A; Korte F
    Ecotoxicol Environ Saf; 1994 Feb; 27(1):90-104. PubMed ID: 7525208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccumulation of organochlorines in relation to the life history in the white-spotted charr Salvelinus leucomaenis.
    Arai T
    Mar Pollut Bull; 2013 Feb; 67(1-2):166-76. PubMed ID: 23246303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia.
    Cui H; Hense BA; Müller J; Schröder P
    Chemosphere; 2015 Sep; 134():307-12. PubMed ID: 25966936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytotoxicity of chlorinated benzenes to Typha angustifolia and Phragmites communis.
    Ma X; Havelka MM
    Environ Toxicol; 2009 Feb; 24(1):43-8. PubMed ID: 18442064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus).
    Mikes O; Cupr P; Trapp S; Klanova J
    Environ Pollut; 2009 Feb; 157(2):488-96. PubMed ID: 18996632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging of organochlorine pesticides and polychlorinated biphenyls in muck soil: volatilization, bioaccessibility, and degradation.
    Wong F; Bidleman TF
    Environ Sci Technol; 2011 Feb; 45(3):958-63. PubMed ID: 21204520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions.
    Toyama T; Furukawa T; Maeda N; Inoue D; Sei K; Mori K; Kikuchi S; Ike M
    Water Res; 2011 Feb; 45(4):1629-38. PubMed ID: 21196023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved prediction of fish bioconcentration factor of hydrophobic chemicals.
    Dearden JC; Shinnawei NM
    SAR QSAR Environ Res; 2004; 15(5-6):449-55. PubMed ID: 15669701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction.
    Hu X; Liu J; Zhou Q; Lu S; Liu R; Cui L; Yin D; Mayer P; Jiang G
    Chemosphere; 2010 Aug; 80(7):693-700. PubMed ID: 20579686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear and non-linear relationships between soil sorption and hydrophobicity: model, validation and influencing factors.
    Wen Y; Su LM; Qin WC; Fu L; He J; Zhao YH
    Chemosphere; 2012 Feb; 86(6):634-40. PubMed ID: 22169711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.