BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23246950)

  • 1. Investigation into the oxidative potential generated by the formation of particulate matter from incense combustion.
    Chuang HC; BéruBé K; Lung SC; Bai KJ; Jones T
    J Hazard Mater; 2013 Jan; 244-245():142-50. PubMed ID: 23246950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hazard assessment of United Arab Emirates (UAE) incense smoke.
    Cohen R; Sexton KG; Yeatts KB
    Sci Total Environ; 2013 Aug; 458-460():176-86. PubMed ID: 23648447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combustion particles emitted during church services: implications for human respiratory health.
    Chuang HC; Jones T; BéruBé K
    Environ Int; 2012 Apr; 40():137-142. PubMed ID: 21831441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physicochemistry and toxicology of CFA particles.
    Jones T; Brown P; BéruBé K; Wlodarczyk A; Longyi S
    J Toxicol Environ Health A; 2010; 73(5):341-54. PubMed ID: 20155577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical characterization of incense aerosols.
    Mannix RC; Nguyen KP; Tan EW; Ho EE; Phalen RF
    Sci Total Environ; 1996 Dec; 193(2):149-58. PubMed ID: 9043146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxidative capacity of indoor source combustion derived particulate matter and resulting respiratory toxicity.
    Niu X; Jones T; BéruBé K; Chuang HC; Sun J; Ho KF
    Sci Total Environ; 2021 May; 767():144391. PubMed ID: 33429274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of particles emitted by incense burning in an experimental house.
    Ji X; Le Bihan O; Ramalho O; Mandin C; D'Anna B; Martinon L; Nicolas M; Bard D; Pairon JC
    Indoor Air; 2010 Apr; 20(2):147-58. PubMed ID: 20409193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of airborne particles and associated organic components produced from incense burning.
    Chuang HC; Jones T; Chen Y; Bell J; Wenger J; BéruBé K
    Anal Bioanal Chem; 2011 Dec; 401(10):3095-102. PubMed ID: 21769554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentrations of air toxics in motor vehicle-dominated environments.
    Fujita EM; Campbell DE; Zielinska B; Arnott WP; Chow JC
    Res Rep Health Eff Inst; 2011 Feb; (156):3-77. PubMed ID: 21608416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxic effects of incense particles in relation to oxidative stress, the cell cycle and F-actin assembly.
    Chuang HC; Jones T; Chen TT; BéruBé K
    Toxicol Lett; 2013 Jul; 220(3):229-37. PubMed ID: 23685081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects.
    Lewtas J
    Mutat Res; 2007; 636(1-3):95-133. PubMed ID: 17951105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambient air pollution triggers wheezing symptoms in infants.
    Andersen ZJ; Loft S; Ketzel M; Stage M; Scheike T; Hermansen MN; Bisgaard H
    Thorax; 2008 Aug; 63(8):710-6. PubMed ID: 18267985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incense, sparklers and cigarettes are significant contributors to indoor benzene and particle levels.
    Tirler W; Settimo G
    Ann Ist Super Sanita; 2015; 51(1):28-33. PubMed ID: 25857381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms.
    Valavanidis A; Fiotakis K; Vlachogianni T
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(4):339-62. PubMed ID: 19034792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma-assisted combustion technology for NOx reduction in industrial burners.
    Lee DH; Kim KT; Kang HS; Song YH; Park JE
    Environ Sci Technol; 2013 Oct; 47(19):10964-70. PubMed ID: 24032692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro.
    Uski O; Jalava PI; Happo MS; Torvela T; Leskinen J; Mäki-Paakkanen J; Tissari J; Sippula O; Lamberg H; Jokiniemi J; Hirvonen MR
    Sci Total Environ; 2015 Apr; 511():331-40. PubMed ID: 25553547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soot-driven reactive oxygen species formation from incense burning.
    Chuang HC; Jones TP; Lung SC; BéruBé KA
    Sci Total Environ; 2011 Oct; 409(22):4781-7. PubMed ID: 21889784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of response of real-time SidePak AM510 monitor to secondhand smoke, other common indoor aerosols, and outdoor aerosol.
    Jiang RT; Acevedo-Bolton V; Cheng KC; Klepeis NE; Ott WR; Hildemann LM
    J Environ Monit; 2011 Jun; 13(6):1695-702. PubMed ID: 21589975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.