These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23247061)

  • 1. Neuroprotective effects of SNX-185 in an in vitro model of TBI with a second insult.
    Shahlaie K; Gurkoff GG; Lyeth BG; Muizelaar JP; Berman RF
    Restor Neurol Neurosci; 2013; 31(2):141-53. PubMed ID: 23247061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroprotection in the rat lateral fluid percussion model of traumatic brain injury by SNX-185, an N-type voltage-gated calcium channel blocker.
    Lee LL; Galo E; Lyeth BG; Muizelaar JP; Berman RF
    Exp Neurol; 2004 Nov; 190(1):70-8. PubMed ID: 15473981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroprotective effects of selective N-type VGCC blockade on stretch-injury-induced calcium dynamics in cortical neurons.
    Shahlaie K; Lyeth BG; Gurkoff GG; Muizelaar JP; Berman RF
    J Neurotrauma; 2010 Jan; 27(1):175-87. PubMed ID: 19772476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of an N-type calcium channel antagonist (SNX 111; Ziconotide) on calcium-45 accumulation following fluid-percussion injury.
    Samii A; Badie H; Fu K; Luther RR; Hovda DA
    J Neurotrauma; 1999 Oct; 16(10):879-92. PubMed ID: 10547097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurobehavioral protection by the neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats.
    Berman RF; Verweij BH; Muizelaar JP
    J Neurosurg; 2000 Nov; 93(5):821-8. PubMed ID: 11059664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: dose-response and time-window profiles for administration of the calcium channel blocker Ziconotide in experimental brain injury.
    Verweij BH; Muizelaar JP; Vinas FC; Peterson PL; Xiong Y; Lee CP
    J Neurosurg; 2000 Nov; 93(5):829-34. PubMed ID: 11059665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Calcium antagonists: current and future applications based on new evidence. Neuroprotective effect of calcium antagonists].
    Ito Y; Araki N
    Clin Calcium; 2010 Jan; 20(1):83-8. PubMed ID: 20048438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E.
    Xiong Y; Peterson PL; Verweij BH; Vinas FC; Muizelaar JP; Lee CP
    J Neurotrauma; 1998 Jul; 15(7):531-44. PubMed ID: 9674556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats.
    Thornton E; Vink R; Blumbergs PC; Van Den Heuvel C
    Brain Res; 2006 Jun; 1094(1):38-46. PubMed ID: 16697978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroprotective effects of novel small peptides in vitro and after brain injury.
    Faden AI; Movsesyan VA; Knoblach SM; Ahmed F; Cernak I
    Neuropharmacology; 2005 Sep; 49(3):410-24. PubMed ID: 15907950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro mechanical strain trauma alters neuronal calcium responses: Implications for posttraumatic epilepsy.
    Gurkoff GG; Shahlaie K; Lyeth BG
    Epilepsia; 2012 Jun; 53 Suppl 1():53-60. PubMed ID: 22612809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels.
    Cater HL; Gitterman D; Davis SM; Benham CD; Morrison B; Sundstrom LE
    J Neurochem; 2007 Apr; 101(2):434-47. PubMed ID: 17250683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential inhibition by a novel Na(+)/Ca(2+) channel blocker NS-7 of severe to mild hypoxic injury in rat cerebrocortical slices: A possible involvement of a highly voltage-dependent blockade of Ca(2+) channel.
    Oka M; Itoh Y; Ukai Y
    J Pharmacol Exp Ther; 2000 May; 293(2):522-9. PubMed ID: 10773024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuation of Zn2+ neurotoxicity by aspirin: role of N-type Ca2+ channel and the carboxyl acid group.
    Kim EY; Chang SY; Chung JM; Ryu BR; Joo CK; Moon HS; Kang K; Yoon SH; Han PL; Gwag BJ
    Neurobiol Dis; 2001 Oct; 8(5):774-83. PubMed ID: 11592847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Administration of an omega-conopeptide one hour following traumatic brain injury reduces 45calcium accumulation.
    Hovda DA; Fu K; Badie H; Samii A; Pinanong P; Becker DP
    Acta Neurochir Suppl (Wien); 1994; 60():521-3. PubMed ID: 7976637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective properties of calcium-channel blockers.
    Zornow MH; Prough DS
    New Horiz; 1996 Feb; 4(1):107-14. PubMed ID: 8689265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial dysfunction after experimental and human brain injury and its possible reversal with a selective N-type calcium channel antagonist (SNX-111).
    Verweij BH; Muizelaar JP; Vinas FC; Peterson PL; Xiong Y; Lee CP
    Neurol Res; 1997 Jun; 19(3):334-9. PubMed ID: 9192388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of mitochondrial calcium uniporter in neuroprotection in traumatic brain injury.
    Cheng G; Fu L; Zhang HY; Wang YM; Zhang LM; Zhang JN
    Med Hypotheses; 2013 Feb; 80(2):115-7. PubMed ID: 23200456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model.
    LaPlaca MC; Cullen DK; McLoughlin JJ; Cargill RS
    J Biomech; 2005 May; 38(5):1093-105. PubMed ID: 15797591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO).
    Chen G; Shi JX; Hang CH; Xie W; Liu J; Liu X
    Neurosci Lett; 2007 Oct; 425(3):177-82. PubMed ID: 17825990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.