These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2324713)

  • 61. Efficacy of Bacillus sphaericus in different breeding habitats of Culex quinquefasciatus.
    Gunasekaran K; Shriram AN; Elangovan A; Narayanan RJ; Balaraman K
    Southeast Asian J Trop Med Public Health; 1996 Sep; 27(3):622-7. PubMed ID: 9185281
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Evaluation of the triflumuron and the mixture of Bacillus thuringiensis plus Bacillus sphaericus for control of the immature stages of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) in catch basins].
    Giraldo-Calderón GI; Pérez M; Morales CA; Ocampo CB
    Biomedica; 2008 Jun; 28(2):224-33. PubMed ID: 18719724
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Small scale field trials of Bacillus sphaericus (strain 2362) against anopheline and culicine mosquito larvae in southern Mexico.
    Arredondo-Jiménez JI; López T; Rodríguez MH; Bown DN
    J Am Mosq Control Assoc; 1990 Jun; 6(2):300-5. PubMed ID: 2370538
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biological control of mosquito larvae by Guppy fish.
    Elias M; Islam MS; Kabir MH; Rahman MK
    Bangladesh Med Res Counc Bull; 1995 Aug; 21(2):81-6. PubMed ID: 8815867
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Macrocyclops albidus (Copepoda: Cyclopidae): a new alternative for the control of mosquito larvae in Cuba].
    Suárez Delgado S; Rodríguez Rodríguez J; Menéndez Díaz Z; Montada Dorta D; García Avila I; Marquetti Fernández Mdel C
    Rev Cubana Med Trop; 2005; 57(3):207-11. PubMed ID: 17969275
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Aquatic safety of Lagenidium giganteum: effects on freshwater fish and invertebrates.
    Nestrud LB; Anderson RL
    J Invertebr Pathol; 1994 Nov; 64(3):228-33. PubMed ID: 7806894
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The composition of sterols in mosquito larvae is optimal for zoosporogenesis in Lagenidium giganteum.
    Warner SA; Sovocool GW; Domnas AJ; Jaronski ST
    J Invertebr Pathol; 1984 Mar; 43(2):293-6. PubMed ID: 6142071
    [No Abstract]   [Full Text] [Related]  

  • 68. Utility of cheap carbon & nitrogen sources for the production of a mosquito-pathogenic fungus, Lagenidium.
    Hoti SL; Balaraman K
    Indian J Med Res; 1990 Jan; 91():67-9. PubMed ID: 1971615
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Efficacy of a granular formulation of Bacillus sphaericus against Culex quinquefasciatus and Anopheles gambiae in West African countries.
    Skovmand O; Bauduin S
    J Vector Ecol; 1997 Jun; 22(1):43-51. PubMed ID: 9221738
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Salinity tolerance of Leptolegnia chapmanii (Oomycetes: Saprolgeniales), a fungal pathogen of mosquito larvae.
    Lord JC; Fukuda T; Daniels E
    J Am Mosq Control Assoc; 1988 Sep; 4(3):370-1. PubMed ID: 3199128
    [No Abstract]   [Full Text] [Related]  

  • 71. Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics.
    Koch S; Schwinger C; Kressler J; Heinzen Ch; Rainov NG
    J Microencapsul; 2003; 20(3):303-16. PubMed ID: 12881112
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An ultrastructural study of the invasion of Culex quinquefasciatus larvae by Leptolegnia chapmanii (Oomycetes: Saprolegniales).
    Lord JC; Fukuda T
    Mycopathologia; 1988 Nov; 104(2):67-73. PubMed ID: 3221914
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The extracellular acid phosphatase of the mosquito-parasitizing fungus Lagenidium giganteum.
    Bell TJ; Lee B; Domnas AJ
    J Invertebr Pathol; 1989 Nov; 54(3):306-13. PubMed ID: 2572649
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake.
    Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Infectivity of a mermithid nematode Romanomermis iyengari (Welch) in different conductivity levels under laboratory and field conditions.
    Paily KP; Arunachalam N; Somachary N; Balaraman K
    Indian J Exp Biol; 1991 Jun; 29(6):579-81. PubMed ID: 1889833
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Long residual activity of Bacillus sphaericus 1593 against Culex quinquefasciatus larvae in artificial pools.
    Pantuwatana S; Maneeroj R; Upatham ES
    Southeast Asian J Trop Med Public Health; 1989 Sep; 20(3):421-7. PubMed ID: 2633350
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Indigenous isolation of F-17--an oomycetous fungus pathogenic to mosquito larvae.
    Galagali JS; Balasubramaniane R; Balaraman K
    Indian J Med Res; 1984 Jul; 80():95-102. PubMed ID: 6519723
    [No Abstract]   [Full Text] [Related]  

  • 78. Phylogenetic and physiological traits of oomycetes originally identified as
    Vilela R; Humber RA; Taylor JW; Mendoza L
    Mycologia; 2019; 111(3):408-422. PubMed ID: 30985262
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lagenidium giganteum pathogenicity in mammals.
    Vilela R; Taylor JW; Walker ED; Mendoza L
    Emerg Infect Dis; 2015 Feb; 21(2):290-7. PubMed ID: 25625190
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Experimental infection of mosquito larvae by a species of the aquatic Fungus lagenidium.
    Umphlett CJ; Huang CS
    J Invertebr Pathol; 1972 Nov; 20(3):326-31. PubMed ID: 4655539
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.