These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 2324720)
1. Salt marsh mosquito control in Portsmouth, Rhode Island. Christie GD J Am Mosq Control Assoc; 1990 Mar; 6(1):144-7. PubMed ID: 2324720 [TBL] [Abstract][Full Text] [Related]
2. Integrated management of waste tire mosquitoes utilizing Mesocyclops longisetus (Copepoda: Cyclopidae), Bacillus thuringiensis var. israelensis, Bacillus sphaericus, and methoprene. Tietze NS; Hester PG; Shaffer KR; Prescott SJ; Schreiber ET J Am Mosq Control Assoc; 1994 Sep; 10(3):363-73. PubMed ID: 7807078 [TBL] [Abstract][Full Text] [Related]
3. Protocol for the introduction of new Bacillus thuringiensis Israelensis products into the routine mosquito control program in Germany. Becker N; Rettich F J Am Mosq Control Assoc; 1994 Dec; 10(4):527-33. PubMed ID: 7707059 [TBL] [Abstract][Full Text] [Related]
4. A new method of testing Bacillus thuringiensis var. israelensis (H-14) formulations on Aedes taeniorhynchus in an abandoned rice impoundment in South Carolina. Wallace FL; Williams DC; Gwinn TA J Am Mosq Control Assoc; 1989 Dec; 5(4):593-5. PubMed ID: 2614409 [No Abstract] [Full Text] [Related]
5. Field trial of two Bacillus thuringiensis var. israelensis formulations for control of Aedes species mosquitoes in Michigan woodlands. Wilmot TR; Allen DW; Harkanson BA J Am Mosq Control Assoc; 1993 Sep; 9(3):344-5. PubMed ID: 8245946 [TBL] [Abstract][Full Text] [Related]
6. Florida's salt-marsh management issues: 1991-98. Carlson DB; O'Bryan PD; Rey JR J Am Mosq Control Assoc; 1999 Jun; 15(2):186-93. PubMed ID: 10412113 [TBL] [Abstract][Full Text] [Related]
7. Effect of Bacillus thuringiensis israelensis (H-14) on the isopod Asellus forbesi and spring Aedes mosquitoes in Michigan. Knepper RG; Walker ED J Am Mosq Control Assoc; 1989 Dec; 5(4):596-8. PubMed ID: 2614410 [No Abstract] [Full Text] [Related]
8. Aerially applied, liquid Bacillus thuringiensis var. Israelensis (H-14) for control of spring Aedes mosquitoes in Michigan. Knepper RG; Wagner SA; Walker ED J Am Mosq Control Assoc; 1991 Jun; 7(2):307-9. PubMed ID: 1895091 [TBL] [Abstract][Full Text] [Related]
9. The runnelling method of habitat modification: an environment-focused tool for salt marsh mosquito management. Hulsman K; Dale PE; Kay BH J Am Mosq Control Assoc; 1989 Jun; 5(2):226-34. PubMed ID: 2568396 [TBL] [Abstract][Full Text] [Related]
10. Control of snow pool mosquitoes with Bacillus thuringiensis serotype H-14 in mountain environments in California and Oregon. Eldridge BF; Washino RK; Henneberger D J Am Mosq Control Assoc; 1985 Mar; 1(1):69-75. PubMed ID: 3880215 [TBL] [Abstract][Full Text] [Related]
11. Influence of temperature and concentration of VectoBac on control of the salt-marsh mosquito, Ochlerotatus squamiger, in Monterey County, California. Christiansen JA; McAbee RD; Stanich MA; DeChant P; Boronda D; Cornel AJ J Am Mosq Control Assoc; 2004 Jun; 20(2):165-70. PubMed ID: 15264626 [TBL] [Abstract][Full Text] [Related]
12. Fixed-wing, aerial application of liquid Bacillus thuringiensis H-14 (Acrobe) for control of spring Aedes mosquitoes in Michigan. Knepper RG; Wagner SA; Abel E; Walker ED J Am Mosq Control Assoc; 1994 Mar; 10(1):42-4. PubMed ID: 8014627 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of Bacillus sphaericus and Bacillus thuringiensis var. israelensis for control of Culex pipiens and floodwater Aedes larvae in Iowa. Berry WJ; Novak MG; Khounlo S; Rowley WA; Melchior GL J Am Mosq Control Assoc; 1987 Dec; 3(4):579-82. PubMed ID: 3504943 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of granular corncob formulations of Bacillus thuringiensis serovar israelensis against mosquito larvae using a semi-field bioassay method. Ali A; Xue RD; Lobinske R; Carandang N J Am Mosq Control Assoc; 1994 Dec; 10(4):492-5. PubMed ID: 7707052 [TBL] [Abstract][Full Text] [Related]
15. Influence of Bacillus thuringiensis var. israelensis on oviposition of Aedes albopictus (Skuse). Stoops CA J Vector Ecol; 2005 Jun; 30(1):41-4. PubMed ID: 16007954 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the efficacy of a combination of Mesocyclops aspericornis and Bacillus thuringiensis var. israelensis by community-based products in controlling Aedes aegypti larvae in Thailand. Kosiyachinda P; Bhumiratana A; Kittayapong P Am J Trop Med Hyg; 2003 Aug; 69(2):206-12. PubMed ID: 13677377 [TBL] [Abstract][Full Text] [Related]
17. Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers. Chansang UR; Bhumiratana A; Kittayapong P J Vector Ecol; 2004 Dec; 29(2):218-26. PubMed ID: 15707281 [TBL] [Abstract][Full Text] [Related]
18. Field evaluation of new water-dispersible granular formulations of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquitoes in microcosms. Su T; Mulla MS J Am Mosq Control Assoc; 1999 Sep; 15(3):356-65. PubMed ID: 10480128 [TBL] [Abstract][Full Text] [Related]
19. [Pathogenesis of Bacillus thuringiensis Var. israelensis in killing larva of mosquitoes and its application]. Tan CY Zhonghua Liu Xing Bing Xue Za Zhi; 1983 Dec; 4(6):370-2. PubMed ID: 6675863 [No Abstract] [Full Text] [Related]
20. Toxicity in carcasses of Bacillus thuringiensis var. israelensis-killed Aedes aegypti larvae against scavenging larvae: implications to bioassay. Zaritsky A; Khawaled K J Am Mosq Control Assoc; 1986 Dec; 2(4):555-9. PubMed ID: 3507532 [No Abstract] [Full Text] [Related] [Next] [New Search]