These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23247400)

  • 1. Treatment of trichloroethene and hexavalent chromium by granular iron in the presence of dissolved CaCO3.
    Jeen SW; Yang Y; Gui L; Gillham RW
    J Contam Hydrol; 2013 Jan; 144(1):108-21. PubMed ID: 23247400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW; Blowes DW; Gillham RW
    J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate reduction and its effects on trichloroethylene degradation by granular iron.
    Lu Q; Jeen SW; Gui L; Gillham RW
    Water Res; 2017 Apr; 112():48-57. PubMed ID: 28131098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal.
    Lo IM; Lam CS; Lai KC
    Water Res; 2006 Feb; 40(3):595-605. PubMed ID: 16406049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precipitates on granular iron in solutions containing calcium carbonate with trichloroethene and hexavalent chromium.
    Jeen SW; Jambor JL; Blowes DW; Gillham RW
    Environ Sci Technol; 2007 Mar; 41(6):1989-94. PubMed ID: 17410795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling gas formation and mineral precipitation in a granular iron column.
    Jeen SW; Amos RT; Blowes DW
    Environ Sci Technol; 2012 Jun; 46(12):6742-9. PubMed ID: 22540940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of carbonate precipitates on long-term performance of granular iron for reductive dechlorination of TCE.
    Jeen SW; Gillham RW; Blowes DW
    Environ Sci Technol; 2006 Oct; 40(20):6432-7. PubMed ID: 17120576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.
    Bae Y; Kim D; Cho HH; Singhal N; Park JW
    Water Res; 2012 Dec; 46(19):6391-8. PubMed ID: 23040563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.
    Gheju M; Balcu I
    J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of initial iron corrosion rate on long-term performance of iron permeable reactive barriers: column experiments and numerical simulation.
    suk O J; Jeen SW; Gillham RW; Gui L
    J Contam Hydrol; 2009 Jan; 103(3-4):145-56. PubMed ID: 19004521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles.
    Geng B; Jin Z; Li T; Qi X
    Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron.
    Ritter K; Odziemkowski MS; Simpgraga R; Gillham RW; Irish DE
    J Contam Hydrol; 2003 Aug; 65(1-2):121-36. PubMed ID: 12855204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.
    Hwang HT; Jeen SW; Sudicky EA; Illman WA
    J Contam Hydrol; 2015; 177-178():43-53. PubMed ID: 25827100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.
    Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P
    Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron.
    Mak MS; Lo IM
    Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive transport modeling of trichloroethene treatment with declining reactivity of iron.
    Jeen SW; Mayer KU; Gillham RW; Blowes DW
    Environ Sci Technol; 2007 Feb; 41(4):1432-8. PubMed ID: 17593753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Groundwater geochemical constituents controlling the reductive dechlorination of TCE by nZVI: Evidence from diverse anaerobic corrosion mechanisms of nZVI.
    Yang X; Zhang C; Liu F; Tang J
    Chemosphere; 2021 Jan; 262():127707. PubMed ID: 32755691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling.
    Weber A; Ruhl AS; Amos RT
    J Contam Hydrol; 2013 Aug; 151():68-82. PubMed ID: 23743511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.