These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23247400)

  • 21. Use of waste iron metal for removal of Cr(VI) from water.
    Lee T; Lim H; Lee Y; Park JW
    Chemosphere; 2003 Nov; 53(5):479-85. PubMed ID: 12948531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity.
    Sun X; Yan Y; Li J; Han W; Wang L
    J Hazard Mater; 2014 Feb; 266():26-33. PubMed ID: 24374562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hexavalent chromium removal from near natural water by copper-iron bimetallic particles.
    Hu CY; Lo SL; Liou YH; Hsu YW; Shih K; Lin CJ
    Water Res; 2010 May; 44(10):3101-8. PubMed ID: 20350740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Cr(VI) removal from groundwater by Fe
    Yin W; Li Y; Wu J; Chen G; Jiang G; Li P; Gu J; Liang H; Liu C
    J Hazard Mater; 2017 Jun; 332():42-50. PubMed ID: 28279872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate.
    Liu T; Rao P; Mak MS; Wang P; Lo IM
    Water Res; 2009 May; 43(9):2540-8. PubMed ID: 19321187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles.
    Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ
    Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of silica on the degradation of organohalides in granular iron columns.
    Kohn T; Roberts AL
    J Contam Hydrol; 2006 Feb; 83(1-2):70-88. PubMed ID: 16364495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects.
    Melitas N; Chuffe-Moscoso O; Farrell J
    Environ Sci Technol; 2001 Oct; 35(19):3948-53. PubMed ID: 11642457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cr(VI) and Cr(VI)-diphenylcarbazide removal from aqueous solutions using an iron rotating disc electrode.
    Campos E; Barrera-Díaz C; Ureña-Núñez F; Palomar-Pardavé M
    Environ Technol; 2007 Jan; 28(1):1-9. PubMed ID: 17283943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions.
    Gandhi S; Oh BT; Schnoor JL; Alvarez PJ
    Water Res; 2002 Apr; 36(8):1973-82. PubMed ID: 12092572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism insights into enhanced Cr(VI) removal using nanoscale zerovalent iron supported on the pillared bentonite by macroscopic and spectroscopic studies.
    Li Y; Li J; Zhang Y
    J Hazard Mater; 2012 Aug; 227-228():211-8. PubMed ID: 22633883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron.
    Rivero-Huguet M; Marshall WD
    Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persulfate oxidation of trichloroethylene with and without iron activation in porous media.
    Liang C; Lee IL; Hsu IY; Liang CP; Lin YL
    Chemosphere; 2008 Jan; 70(3):426-35. PubMed ID: 17692892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects of benzene, toluene on reductive dechlorination of trichloroethylene and its daughter product cis-1,2-dichloroethylene by granular iron].
    Liu YL; Xia F; Liu F; Chen HH
    Huan Jing Ke Xue; 2010 Jul; 31(7):1526-32. PubMed ID: 20825021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of the removal mechanism of Cr(VI) in groundwater using activated carbon and cast iron combined system.
    Huang D; Wang G; Li Z; Kang F; Liu F
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18341-18354. PubMed ID: 28639020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of gas generation and precipitates on performance of Fe0 PRBs.
    Zhang Y; Gillham RW
    Ground Water; 2005; 43(1):113-21. PubMed ID: 15726929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers.
    Schüth C; Bill M; Barth JA; Slater GF; Kalin RM
    J Contam Hydrol; 2003 Oct; 66(1-2):25-37. PubMed ID: 14516939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.