BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23247557)

  • 1. Study on chromium-binding capacity of Callitriche cophocarpa in an aquatic environment.
    Augustynowicz J; Kyzioł-Komosińska J; Smoleń S; Waloszek A
    Arch Environ Contam Toxicol; 2013 Apr; 64(3):410-8. PubMed ID: 23247557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn.
    Augustynowicz J; Grosicki M; Hanus-Fajerska E; Lekka M; Waloszek A; Kołoczek H
    Chemosphere; 2010 May; 79(11):1077-83. PubMed ID: 20385400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation patterns of Cr in Callitriche organs--qualitative and quantitative analysis.
    Augustynowicz J; Gajewski Z; Kostecka-Gugała A; Wróbel P; Kołton A
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2669-76. PubMed ID: 26438365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium distribution in shoots of macrophyte Callitriche cophocarpa Sendtn.
    Augustynowicz J; Wróbel P; Płachno BJ; Tylko G; Gajewski Z; Węgrzynek D
    Planta; 2014 Jun; 239(6):1233-42. PubMed ID: 24595517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium.
    Kyzioł-Komosińska J; Augustynowicz J; Lasek W; Czupioł J; Ociński D
    J Environ Manage; 2018 May; 214():295-304. PubMed ID: 29533827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of Callitriche cophocarpa Sendtn. for the reclamation of Cr-contaminated freshwater habitat: benefits and limitations.
    Augustynowicz J; Sitek E; Bryniarski T; Baran A; Ostachowicz B; Urbańska-Stopa M; Szklarczyk M
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25510-25522. PubMed ID: 32347505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Callitriche cophocarpa (water starwort) proteome under chromate stress: evidence for induction of a quinone reductase.
    Kaszycki P; Dubicka-Lisowska A; Augustynowicz J; Piwowarczyk B; Wesołowski W
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8928-8942. PubMed ID: 29332274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of water polluted by thallium, cadmium, zinc, and lead with the use of macrophyte Callitriche cophocarpa.
    Augustynowicz J; Tokarz K; Baran A; Płachno BJ
    Arch Environ Contam Toxicol; 2014 May; 66(4):572-81. PubMed ID: 24477868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism.
    Ye Y; Jiang Z; Xu Z; Zhang X; Wang D; Lv L; Pan B
    Water Res; 2017 Dec; 126():172-178. PubMed ID: 28946060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of chromium(VI) by salting-out with a homogeneous, mixed solvent of water and 2-propanol: a laboratory study.
    Samaratunga SS; Nishimoto J; Tabata M
    Environ Sci Pollut Res Int; 2008 Jan; 15(1):27-30. PubMed ID: 18306885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly(acrylonitril-co-acrylamidopropyl-trimethyl ammonium chloride)-based hydrogels.
    Dudu TE; Sahiner M; Alpaslan D; Demirci S; Aktas N
    J Environ Manage; 2015 Sep; 161():243-251. PubMed ID: 26188989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Cr(VI) Exposed and Unexposed Plant Parts of Tradescantia pallida (Rose) D. R. Hunt. for Cr Removal from Wastewater by Biosorption.
    Sinha V; Pakshirajan K; Chaturvedi R
    Int J Phytoremediation; 2015; 17(12):1204-11. PubMed ID: 25946544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies.
    Elangovan R; Philip L; Chandraraj K
    J Hazard Mater; 2008 Mar; 152(1):100-12. PubMed ID: 17689012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila.
    Huang XN; Min D; Liu DF; Cheng L; Qian C; Li WW; Yu HQ
    Environ Int; 2019 Aug; 129():86-94. PubMed ID: 31121519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
    Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ
    Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential for chromium (VI) bioremediation by the aquatic carnivorous plant Utricularia gibba L. (Lentibulariaceae).
    Augustynowicz J; Łukowicz K; Tokarz K; Płachno BJ
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9742-8. PubMed ID: 25634365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica.
    Bankar AV; Kumar AR; Zinjarde SS
    J Hazard Mater; 2009 Oct; 170(1):487-94. PubMed ID: 19467781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium alginate entrapped Eupatorium adenophorum Sprengel stems powder for chromium(VI) biosorption in aqueous mediums.
    Aryal M
    PLoS One; 2019; 14(8):e0213477. PubMed ID: 31419220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cr(VI) adsorption from aqueous solution by fungal bioremediation based using Rhizopus sp.
    Espinoza-Sánchez MA; Arévalo-Niño K; Quintero-Zapata I; Castro-González I; Almaguer-Cantú V
    J Environ Manage; 2019 Dec; 251():109595. PubMed ID: 31561145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.