BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23247568)

  • 1. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells.
    Jiang J; Hao W; Li Y; Yao J; Shao Z; Li H; Yang J; Chen S
    Biotechnol Lett; 2013 Apr; 35(4):657-61. PubMed ID: 23247568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold.
    He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC
    J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutes.
    Vachiraroj N; Ratanavaraporn J; Damrongsakkul S; Pichyangkura R; Banaprasert T; Kanokpanont S
    Int J Biol Macromol; 2009 Dec; 45(5):470-7. PubMed ID: 19660495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior.
    Wei K; Li Y; Kim KO; Nakagawa Y; Kim BS; Abe K; Chen GQ; Kim IS
    J Biomed Mater Res A; 2011 Jun; 97(3):272-80. PubMed ID: 21442728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute.
    Kweon H; Lee KG; Chae CH; Balázsi C; Min SK; Kim JY; Choi JY; Kim SG
    J Oral Maxillofac Surg; 2011 Jun; 69(6):1578-86. PubMed ID: 21272978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.
    Panda N; Bissoyi A; Pramanik K; Biswas A
    J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.
    Sinlapabodin S; Amornsudthiwat P; Damrongsakkul S; Kanokpanont S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():960-70. PubMed ID: 26478392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect.
    Wang G; Yang H; Li M; Lu S; Chen X; Cai X
    J Bone Joint Surg Br; 2010 Feb; 92(2):320-5. PubMed ID: 20130332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop.
    Liu H; Xu GW; Wang YF; Zhao HS; Xiong S; Wu Y; Heng BC; An CR; Zhu GH; Xie DH
    Biomaterials; 2015 May; 49():103-12. PubMed ID: 25725559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.
    Singh BN; Panda NN; Mund R; Pramanik K
    Carbohydr Polym; 2016 Oct; 151():335-347. PubMed ID: 27474575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films.
    Luan XY; Wang Y; Duan X; Duan QY; Li MZ; Lu SZ; Zhang HX; Zhang XG
    Biomed Mater; 2006 Dec; 1(4):181-7. PubMed ID: 18458403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering.
    Chen L; Hu J; Ran J; Shen X; Tong H
    Int J Biol Macromol; 2014 Apr; 65():1-7. PubMed ID: 24412151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits.
    Jin J; Wang J; Huang J; Huang F; Fu J; Yang X; Miao Z
    J Biosci Bioeng; 2014 Nov; 118(5):593-8. PubMed ID: 24894683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery.
    Zhang Y; Fan W; Nothdurft L; Wu C; Zhou Y; Crawford R; Xiao Y
    Tissue Eng Part C Methods; 2011 Aug; 17(8):789-97. PubMed ID: 21506685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin.
    Yao MZ; Huang-Fu MY; Liu HN; Wang XR; Sheng X; Gao JQ
    Int J Nanomedicine; 2016; 11():6181-6194. PubMed ID: 27920525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering.
    Garcia-Fuentes M; Meinel AJ; Hilbe M; Meinel L; Merkle HP
    Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual-layer silk fibroin scaffold for reconstructing the human corneal limbus.
    Bray LJ; George KA; Hutmacher DW; Chirila TV; Harkin DG
    Biomaterials; 2012 May; 33(13):3529-38. PubMed ID: 22336295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.