These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23247575)

  • 1. β-cell metabolic alterations under chronic nutrient overload in rat and human islets.
    Vernier S; Chiu A; Schober J; Weber T; Nguyen P; Luer M; McPherson T; Wanda PE; Marshall CA; Rohatgi N; McDaniel ML; Greenberg AS; Kwon G
    Islets; 2012; 4(6):379-92. PubMed ID: 23247575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1.
    Bachar E; Ariav Y; Ketzinel-Gilad M; Cerasi E; Kaiser N; Leibowitz G
    PLoS One; 2009; 4(3):e4954. PubMed ID: 19305497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes.
    Soliman GA; Acosta-Jaquez HA; Fingar DC
    Lipids; 2010 Dec; 45(12):1089-100. PubMed ID: 21042876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal regulation of mTOR complexes in pancreatic islets from humans with type 2 diabetes.
    Yuan T; Rafizadeh S; Gorrepati KD; Lupse B; Oberholzer J; Maedler K; Ardestani A
    Diabetologia; 2017 Apr; 60(4):668-678. PubMed ID: 28004151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice.
    Bermudez-Silva FJ; Romero-Zerbo SY; Haissaguerre M; Ruz-Maldonado I; Lhamyani S; El Bekay R; Tabarin A; Marsicano G; Cota D
    Dis Model Mech; 2016 Jan; 9(1):51-61. PubMed ID: 26563389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1.
    Koyanagi M; Asahara S; Matsuda T; Hashimoto N; Shigeyama Y; Shibutani Y; Kanno A; Fuchita M; Mikami T; Hosooka T; Inoue H; Matsumoto M; Koike M; Uchiyama Y; Noda T; Seino S; Kasuga M; Kido Y
    PLoS One; 2011; 6(8):e23238. PubMed ID: 21886784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Fatty Acid Signaling in Islet Beta-Cell Adaptation to Normal Pregnancy.
    Kim JH; Delghingaro-Augusto V; Chan JY; Laybutt DR; Proietto J; Nolan CJ
    Front Endocrinol (Lausanne); 2021; 12():799081. PubMed ID: 35069446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free fatty acid-induced beta-cell defects are dependent on uncoupling protein 2 expression.
    Joseph JW; Koshkin V; Saleh MC; Sivitz WI; Zhang CY; Lowell BB; Chan CB; Wheeler MB
    J Biol Chem; 2004 Dec; 279(49):51049-56. PubMed ID: 15448158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue.
    Houde VP; Brûlé S; Festuccia WT; Blanchard PG; Bellmann K; Deshaies Y; Marette A
    Diabetes; 2010 Jun; 59(6):1338-48. PubMed ID: 20299475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucolipotoxicity promotes the capacity of the glycerolipid/NEFA cycle supporting the secretory response of pancreatic beta cells.
    Oberhauser L; Jiménez-Sánchez C; Madsen JGS; Duhamel D; Mandrup S; Brun T; Maechler P
    Diabetologia; 2022 Apr; 65(4):705-720. PubMed ID: 35018486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adipose differentiation-related protein regulates lipids and insulin in pancreatic islets.
    Faleck DM; Ali K; Roat R; Graham MJ; Crooke RM; Battisti R; Garcia E; Ahima RS; Imai Y
    Am J Physiol Endocrinol Metab; 2010 Aug; 299(2):E249-57. PubMed ID: 20484013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rap1 promotes multiple pancreatic islet cell functions and signals through mammalian target of rapamycin complex 1 to enhance proliferation.
    Kelly P; Bailey CL; Fueger PT; Newgard CB; Casey PJ; Kimple ME
    J Biol Chem; 2010 May; 285(21):15777-85. PubMed ID: 20339002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAD-A kinase controls islet β-cell size and function as a mediator of mTORC1 signaling.
    Nie J; Liu X; Lilley BN; Zhang H; Pan YA; Kimball SR; Zhang J; Zhang W; Wang L; Jefferson LS; Sanes JR; Han X; Shi Y
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13857-62. PubMed ID: 23922392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.
    Nolan CJ; Leahy JL; Delghingaro-Augusto V; Moibi J; Soni K; Peyot ML; Fortier M; Guay C; Lamontagne J; Barbeau A; Przybytkowski E; Joly E; Masiello P; Wang S; Mitchell GA; Prentki M
    Diabetologia; 2006 Sep; 49(9):2120-30. PubMed ID: 16868750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleate-mediated activation of phospholipase D and mammalian target of rapamycin (mTOR) regulates proliferation and rapamycin sensitivity of hepatocarcinoma cells.
    Arous C; Naïmi M; Van Obberghen E
    Diabetologia; 2011 Apr; 54(4):954-64. PubMed ID: 21240477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway.
    Filiputti E; Rafacho A; Araújo EP; Silveira LR; Trevisan A; Batista TM; Curi R; Velloso LA; Quesada I; Boschero AC; Carneiro EM
    Metabolism; 2010 May; 59(5):635-44. PubMed ID: 19913855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exendin-4 stimulates islet cell replication via the IGF1 receptor activation of mTORC1/S6K1.
    Xie J; El Sayed NM; Qi C; Zhao X; Moore CE; Herbert TP
    J Mol Endocrinol; 2014 Aug; 53(1):105-15. PubMed ID: 24994913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute and chronic effects of different concentrations of free fatty acids on the insulin secreting function of islets.
    Ayvaz G; Balos Törüner F; Karakoç A; Yetkin I; Cakir N; Arslan M
    Diabetes Metab; 2002 Dec; 28(6 Pt 2):3S7-12; discussion 3S108-12. PubMed ID: 12688627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mTORC2/PKC pathway sustains compensatory insulin secretion of pancreatic β cells in response to metabolic stress.
    Xie Y; Cui C; Nie A; Wang Y; Ni Q; Liu Y; Yin Q; Zhang H; Li Y; Wang Q; Gu Y; Ning G
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):2039-2047. PubMed ID: 28435021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic inhibition of the mTORC1/S6K1 pathway increases insulin-induced PI3K activity but inhibits Akt2 and glucose transport stimulation in 3T3-L1 adipocytes.
    Veilleux A; Houde VP; Bellmann K; Marette A
    Mol Endocrinol; 2010 Apr; 24(4):766-78. PubMed ID: 20203102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.