These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23247653)

  • 1. Nanoscale oxidation and complex oxide growth on single crystal iron surfaces and external electric field effects.
    Jeon B; Van Overmeere Q; van Duin AC; Ramanathan S
    Phys Chem Chem Phys; 2013 Feb; 15(6):1821-30. PubMed ID: 23247653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of sulfur dioxide on hematite and goethite particle surfaces.
    Baltrusaitis J; Cwiertny DM; Grassian VH
    Phys Chem Chem Phys; 2007 Nov; 9(41):5542-54. PubMed ID: 17957310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive molecular dynamics of the initial oxidation stages of Ni111 in pure water: effect of an applied electric field.
    Assowe O; Politano O; Vignal V; Arnoux P; Diawara B; Verners O; van Duin AC
    J Phys Chem A; 2012 Dec; 116(48):11796-805. PubMed ID: 23092361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111).
    Gerrard AL; Weaver JF
    J Chem Phys; 2005 Dec; 123(22):224703. PubMed ID: 16375491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of nickel surfaces through the energetic impacts of oxygen molecules: Reactive molecular dynamics simulations.
    Amiri N; Behnejad H
    J Chem Phys; 2016 Apr; 144(14):144705. PubMed ID: 27083743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considerations on ultra-high frequency electric field effects on oxygen vacancy concentration in oxide thin films.
    Sankaranarayanan SK; Subbaraman R; Ramanathan S
    Phys Chem Chem Phys; 2012 Mar; 14(10):3360-8. PubMed ID: 22297437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process.
    Cheng Z; Qin L; Guo M; Xu M; Fan JA; Fan LS
    Phys Chem Chem Phys; 2016 Nov; 18(47):32418-32428. PubMed ID: 27869258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase determination and microstructure of oxide scales formed on steel at high temperature.
    West GD; Birosca S; Higginson RL
    J Microsc; 2005 Feb; 217(Pt 2):122-9. PubMed ID: 15683409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular construction of oxide structures--compositional control of transition metal coordination environments.
    Tenailleau C; Allix M; Claridge JB; Hervieu M; Thomas MF; Hirst JP; Rosseinsky MJ
    J Am Chem Soc; 2008 Jun; 130(24):7570-83. PubMed ID: 18505254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions.
    Baltrusaitis J; Jayaweera PM; Grassian VH
    Phys Chem Chem Phys; 2009 Oct; 11(37):8295-305. PubMed ID: 19756286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.
    Shin YK; Kwak H; Zou C; Vasenkov AV; van Duin AC
    J Phys Chem A; 2012 Dec; 116(49):12163-74. PubMed ID: 23167515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrous oxide decomposition over Fe-ZSM-5 in the presence of nitric oxide: a comprehensive DFT study.
    Heyden A; Hansen N; Bell AT; Keil FJ
    J Phys Chem B; 2006 Aug; 110(34):17096-114. PubMed ID: 16928005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ observations of early oxide formation in steel under hot-rolling conditions.
    Melfo WM; Dippenaar RJ
    J Microsc; 2007 Feb; 225(Pt 2):147-55. PubMed ID: 17359249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial oxidation of a Rh(110) surface using atomic or molecular oxygen and reduction of the surface oxide by hydrogen.
    Dudin P; Barinov A; Gregoratti L; Kiskinova M; Esch F; Dri C; Africh C; Comelli G
    J Phys Chem B; 2005 Jul; 109(28):13649-55. PubMed ID: 16852710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and process conditions of aligned and patternable films of iron(III) oxide nanowires by thermal oxidation of iron.
    Hiralal P; Unalan HE; Wijayantha KG; Kursumovic A; Jefferson D; Macmanus-Driscoll JL; Amaratunga GA
    Nanotechnology; 2008 Nov; 19(45):455608. PubMed ID: 21832785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode.
    Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D
    Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of zero valent iron nanoparticle oxidation in oxygenated water.
    Greenlee LF; Torrey JD; Amaro RL; Shaw JM
    Environ Sci Technol; 2012 Dec; 46(23):12913-20. PubMed ID: 23130994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A kinetic study of the reactions of Fe+ with N2O, N2, O2, CO2 and H2O, and the ligand-switching reactions Fe+.X + Y --> Fe+.Y + X (X = N2, O2, CO2; Y = O2, H2O).
    Vondrak T; Woodcock KR; Plane JM
    Phys Chem Chem Phys; 2006 Jan; 8(4):503-12. PubMed ID: 16482293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.