These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23247669)

  • 1. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water.
    Herrmann-Geppert I; Bogdanoff P; Radnik J; Fengler S; Dittrich T; Fiechter S
    Phys Chem Chem Phys; 2013 Feb; 15(5):1389-98. PubMed ID: 23247669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water oxidation at hematite photoelectrodes: the role of surface states.
    Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J
    J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment.
    Moir J; Soheilnia N; Liao K; O'Brien P; Tian Y; Burch KS; Ozin GA
    ChemSusChem; 2015 May; 8(9):1557-67. PubMed ID: 25650837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface treatment of hematite photoanodes with zinc acetate for water oxidation.
    Xi L; Bassi PS; Chiam SY; Mak WF; Tran PD; Barber J; Chye Loo JS; Wong LH
    Nanoscale; 2012 Aug; 4(15):4430-3. PubMed ID: 22688799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of sulfur dioxide on hematite and goethite particle surfaces.
    Baltrusaitis J; Cwiertny DM; Grassian VH
    Phys Chem Chem Phys; 2007 Nov; 9(41):5542-54. PubMed ID: 17957310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.
    Hamd W; Cobo S; Fize J; Baldinozzi G; Schwartz W; Reymermier M; Pereira A; Fontecave M; Artero V; Laberty-Robert C; Sanchez C
    Phys Chem Chem Phys; 2012 Oct; 14(38):13224-32. PubMed ID: 22911106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO2 and Fe2O3 films for photoelectrochemical water splitting.
    Krysa J; Zlamal M; Kment S; Brunclikova M; Hubicka Z
    Molecules; 2015 Jan; 20(1):1046-58. PubMed ID: 25584834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Effect in Fluorine-Doped Hematite Nanocrystals for Efficient Water Oxidation.
    Xie J; Liu W; Xin J; Lei F; Gao L; Qu H; Zhang X; Xie Y
    ChemSusChem; 2017 Nov; 10(22):4465-4471. PubMed ID: 28801934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation.
    Zhang Y; Zhou Z; Chen C; Che Y; Ji H; Ma W; Zhang J; Song D; Zhao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12844-51. PubMed ID: 25068504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base.
    Doyle RL; Lyons ME
    Phys Chem Chem Phys; 2013 Apr; 15(14):5224-37. PubMed ID: 23348122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical impedance study of the hematite/water interface.
    Shimizu K; Lasia A; Boily JF
    Langmuir; 2012 May; 28(20):7914-20. PubMed ID: 22540260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation.
    Barroso M; Cowan AJ; Pendlebury SR; Grätzel M; Klug DR; Durrant JR
    J Am Chem Soc; 2011 Sep; 133(38):14868-71. PubMed ID: 21861508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sol-gel-derived iron oxide thin films on silicon: surface properties and interfacial chemistry.
    Park CD; Walker J; Tannenbaum R; Stiegman AE; Frydrych J; Machala L
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1843-6. PubMed ID: 20355802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical properties and relaxation times of the hematite/water interface.
    Shimizu K; Boily JF
    Langmuir; 2014 Aug; 30(31):9591-8. PubMed ID: 25072470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of surface States in the oxygen evolution reaction on hematite.
    Iandolo B; Hellman A
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13404-8. PubMed ID: 25283270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.