BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23247732)

  • 1. The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy.
    Horsburgh A; Massoud TF
    Surg Radiol Anat; 2013 May; 35(4):343-9. PubMed ID: 23247732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The circumventricular organs.
    Kaur C; Ling EA
    Histol Histopathol; 2017 Sep; 32(9):879-892. PubMed ID: 28177105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Circumventricular Organs in the Mirror of Zebrafish Enhancer-Trap Transgenics.
    García-Lecea M; Gasanov E; Jedrychowska J; Kondrychyn I; Teh C; You MS; Korzh V
    Front Neuroanat; 2017; 11():114. PubMed ID: 29375325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain.
    Morita S; Miyata S
    Cell Tissue Res; 2012 Aug; 349(2):589-603. PubMed ID: 22584508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origins of the circumventricular organs.
    Kiecker C
    J Anat; 2018 Apr; 232(4):540-553. PubMed ID: 29280147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive cell proliferation and neurogenesis in the organum vasculosum lamina terminalis and subfornical organ of adult rats.
    Zhou S; Makashova O; Chevillard PM; Josey V; Li B; Prager-Khoutorsky M
    J Neuroendocrinol; 2024 Apr; 36(4):e13377. PubMed ID: 38418229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain.
    Langlet F; Mullier A; Bouret SG; Prevot V; Dehouck B
    J Comp Neurol; 2013 Oct; 521(15):3389-405. PubMed ID: 23649873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical, molecular and pathological consideration of the circumventricular organs.
    Szathmari A; Jouvet A; Mottolese C; Champier J; Fèvre Montange M
    Neurochirurgie; 2015; 61(2-3):90-100. PubMed ID: 24974365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circumventricular organs of human brain visualized on post-contrast 3D fluid-attenuated inversion recovery imaging.
    Azuma M; Hirai T; Kadota Y; Khant ZA; Hattori Y; Kitajima M; Uetani H; Yamashita Y
    Neuroradiology; 2018 Jun; 60(6):583-590. PubMed ID: 29721578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Appearance of the Organum Vasculosum of the Lamina Terminalis on Contrast-enhanced MR Imaging.
    Naganawa S; Taoka T; Kawai H; Yamazaki M; Suzuki K
    Magn Reson Med Sci; 2018 Apr; 17(2):132-137. PubMed ID: 28966303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis.
    Schulz M; Engelhardt B
    Cerebrospinal Fluid Res; 2005 Sep; 2():8. PubMed ID: 16197544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory circumventricular organs and brain homeostatic pathways.
    Johnson AK; Gross PM
    FASEB J; 1993 May; 7(8):678-86. PubMed ID: 8500693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains.
    Mannari T; Morita S; Furube E; Tominaga M; Miyata S
    Glia; 2013 Jun; 61(6):957-71. PubMed ID: 23468425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors.
    Szathmari A; Champier J; Ghersi-Egea JF; Jouvet A; Watrin C; Wierinckx A; Fèvre Montange M
    Neuropathology; 2013 Feb; 33(1):17-29. PubMed ID: 22537279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in pericytic expression of NG2 and PDGFRB and vascular permeability in the sensory circumventricular organs of adult mouse by osmotic stimulation.
    Morita S; Hourai A; Miyata S
    Cell Biochem Funct; 2014 Jan; 32(1):51-61. PubMed ID: 23629811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of periodic acid-thiocarbohydrazide-silver protein-physical development (PA-TCH-SP-PD) procedure for the histochemical detection of neutral carbohydrates in the circumventricular organs of the rat.
    Ueda T; Fujimori O; Yamada K
    Okajimas Folia Anat Jpn; 1994 Dec; 71(5):325-33. PubMed ID: 7898857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains.
    Miyata S
    Front Neurosci; 2015; 9():390. PubMed ID: 26578857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apoptosis and necrosis in the circumventricular organs after experimental subarachnoid hemorrhage as detected with annexin V and caspase 3 immunostaining.
    Edebali N; Tekin IÖ; Açıkgöz B; Açıkgöz S; Barut F; Sevinç N; Sümbüloğlu V
    Neurol Res; 2014 Dec; 36(12):1114-20. PubMed ID: 25137492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permeability of the windows of the brain: feasibility of dynamic contrast-enhanced MRI of the circumventricular organs.
    Verheggen ICM; de Jong JJA; van Boxtel MPJ; Postma AA; Verhey FRJ; Jansen JFA; Backes WH
    Fluids Barriers CNS; 2020 Oct; 17(1):66. PubMed ID: 33115484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger.
    McKinley MJ; Denton DA; Ryan PJ; Yao ST; Stefanidis A; Oldfield BJ
    J Neuroendocrinol; 2019 Mar; 31(3):e12689. PubMed ID: 30672620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.