BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23247732)

  • 21. Angiotensin II receptor content within the subfornical organ and organum vasculosum lamina terminalis increases after experimental subarachnoid haemorrhage in rats.
    Açikgöz B; Ozgen T; Ozdoğan F; Sungur A; Tekkök IH
    Acta Neurochir (Wien); 1996; 138(4):460-5. PubMed ID: 8738397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain.
    Morita S; Furube E; Mannari T; Okuda H; Tatsumi K; Wanaka A; Miyata S
    Cell Tissue Res; 2015 Mar; 359(3):865-84. PubMed ID: 25573819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization of immunoreactive prolactin in ependyma and circumventricular organs of rat brain.
    Thompson SA
    Cell Tissue Res; 1982; 225(1):79-93. PubMed ID: 7116429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of the tight junction-associated protein ZO-1 in circumventricular organs of the CNS.
    Petrov T; Howarth AG; Krukoff TL; Stevenson BR
    Brain Res Mol Brain Res; 1994 Feb; 21(3-4):235-46. PubMed ID: 8170348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain.
    Nakano Y; Furube E; Morita S; Wanaka A; Nakashima T; Miyata S
    J Neuroimmunol; 2015 Jan; 278():144-58. PubMed ID: 25595264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative in vivo autoradiographic localization of [125I-Tyr11]somatostatin-14- and [Leu8,D-Trp22-125I-Tyr25]somatostatin-28-binding sites in rat brain.
    Patel YC; Baquiran G; Srikant CB; Posner BI
    Endocrinology; 1986 Nov; 119(5):2262-9. PubMed ID: 2876887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extracellular matrix components mark the territories of circumventricular organs.
    Pócsai K; Kálmán M
    Neurosci Lett; 2014 Apr; 566():36-41. PubMed ID: 24561092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs.
    Vargas-Caraveo A; Sayd A; Robledo-Montaña J; Caso JR; Madrigal JLM; García-Bueno B; Leza JC
    J Neuroinflammation; 2020 Jan; 17(1):6. PubMed ID: 31906991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurogenesis in the circumventricular organs of adult mouse brains.
    Hourai A; Miyata S
    J Neurosci Res; 2013 Jun; 91(6):757-70. PubMed ID: 23526379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relation of neuropeptides to mammalian circumventricular organs.
    Weindl A; Sofroniew MV
    Adv Biochem Psychopharmacol; 1981; 28():303-20. PubMed ID: 7010939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain.
    Morita S; Furube E; Mannari T; Okuda H; Tatsumi K; Wanaka A; Miyata S
    Cell Tissue Res; 2016 Feb; 363(2):497-511. PubMed ID: 26048259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circumventricular organ capillaries.
    Gross PM
    Prog Brain Res; 1992; 91():219-33. PubMed ID: 1410407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interleukin-10 modulates the synthesis of inflammatory mediators in the sensory circumventricular organs: implications for the regulation of fever and sickness behaviors.
    Harden LM; Rummel C; Luheshi GN; Poole S; Gerstberger R; Roth J
    J Neuroinflammation; 2013 Feb; 10():22. PubMed ID: 23388469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glial functions in the blood-brain communication at the circumventricular organs.
    Miyata S
    Front Neurosci; 2022; 16():991779. PubMed ID: 36278020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Angiotensin II receptor content within the circumventricular organs increases after experimental hydrocephalus in rats.
    Açikgöz B; Akpinar G; Bingöl N; Usseli I
    Acta Neurochir (Wien); 1999; 141(10):1095-9. PubMed ID: 10550656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathways of hydrogen utilization from NADPH generated by glucose-6-phosphate dehydrogenase in circumventricular organs and the hypothalamo-neurohypophysial system: a cytochemical study.
    Summy-Long JY; Salisbury R; Marietta MP; Hartman RD; Weisz J
    Brain Res; 1984 Feb; 294(1):23-35. PubMed ID: 6697240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential responses of the vasotocin 1a receptor (V1aR) and osmoreceptors to immobilization and osmotic stress in sensory circumventricular organs of the chicken (Gallus gallus) brain.
    Aman NA; Nagarajan G; Kang SW; Hancock M; Kuenzel WJ
    Brain Res; 2016 Oct; 1649(Pt A):67-78. PubMed ID: 27559012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recruitment of neural precursor cells from circumventricular organs of patients with cerebral ischaemia.
    Sanin V; Heeß C; Kretzschmar HA; Schüller U
    Neuropathol Appl Neurobiol; 2013 Aug; 39(5):510-8. PubMed ID: 22985410
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.