These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 23247825)
1. Xylitol production by genetically engineered Trichoderma reesei strains using barley straw as feedstock. Dashtban M; Kepka G; Seiboth B; Qin W Appl Biochem Biotechnol; 2013 Jan; 169(2):554-69. PubMed ID: 23247825 [TBL] [Abstract][Full Text] [Related]
2. Isolation and identification of xylitol dehydrogenase gene from Trichoderma reesei. Wang T; Penttilä M; Gao P; Wang C; Zhong L Chin J Biotechnol; 1998; 14(3):179-85. PubMed ID: 10503078 [TBL] [Abstract][Full Text] [Related]
3. Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Wang TH; Zhong YH; Huang W; Liu T; You YW Lett Appl Microbiol; 2005; 40(6):424-9. PubMed ID: 15892737 [TBL] [Abstract][Full Text] [Related]
4. The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks. Xiong L; Kameshwar AK; Chen X; Guo Z; Mao C; Chen S; Qin W Microb Cell Fact; 2016 Dec; 15(1):215. PubMed ID: 28031033 [TBL] [Abstract][Full Text] [Related]
5. D-xylose metabolism in Hypocrea jecorina: loss of the xylitol dehydrogenase step can be partially compensated for by lad1-encoded L-arabinitol-4-dehydrogenase. Seiboth B; Hartl L; Pail M; Kubicek CP Eukaryot Cell; 2003 Oct; 2(5):867-75. PubMed ID: 14555469 [TBL] [Abstract][Full Text] [Related]
6. NAD⁺-dependent xylitol dehydrogenase (xdhA) and L-arabitol-4-dehydrogenase (ladA) deletion mutants of Aspergillus oryzae for improved xylitol production. Mahmud A; Hattori K; Hongwen C; Kitamoto N; Suzuki T; Nakamura K; Takamizawa K Biotechnol Lett; 2013 May; 35(5):769-77. PubMed ID: 23436125 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of D-xylose reductase (xyl1) gene and antisense inhibition of D-xylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei. Hong Y; Dashtban M; Kepka G; Chen S; Qin W Biomed Res Int; 2014; 2014():169705. PubMed ID: 25013760 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Ko BS; Kim DM; Yoon BH; Bai S; Lee HY; Kim JH; Kim IC Biotechnol Lett; 2011 Jun; 33(6):1209-13. PubMed ID: 21331586 [TBL] [Abstract][Full Text] [Related]
9. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417 [TBL] [Abstract][Full Text] [Related]
10. Bioconversion of d-xylose to d-xylonate with Kluyveromyces lactis. Nygård Y; Toivari MH; Penttilä M; Ruohonen L; Wiebe MG Metab Eng; 2011 Jul; 13(4):383-91. PubMed ID: 21515401 [TBL] [Abstract][Full Text] [Related]
11. Role of xylose transporters in xylitol production from engineered Escherichia coli. Khankal R; Chin JW; Cirino PC J Biotechnol; 2008 Apr; 134(3-4):246-52. PubMed ID: 18359531 [TBL] [Abstract][Full Text] [Related]
12. Construction and co-expression of plasmid encoding xylitol dehydrogenase and a cofactor regeneration enzyme for the production of xylitol from D-arabitol. Zhou P; Li S; Xu H; Feng X; Ouyang P Enzyme Microb Technol; 2012 Jul; 51(2):119-24. PubMed ID: 22664197 [TBL] [Abstract][Full Text] [Related]
13. Efficient Biosynthesis of Xylitol from Xylose by Coexpression of Xylose Reductase and Glucose Dehydrogenase in Escherichia coli. Jin LQ; Xu W; Yang B; Liu ZQ; Zheng YG Appl Biochem Biotechnol; 2019 Apr; 187(4):1143-1157. PubMed ID: 30175383 [TBL] [Abstract][Full Text] [Related]
14. A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Guo X; Zhang R; Li Z; Dai D; Li C; Zhou X Bioresour Technol; 2013 Jan; 128():547-52. PubMed ID: 23211479 [TBL] [Abstract][Full Text] [Related]
15. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
16. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Ko BS; Rhee CH; Kim JH Biotechnol Lett; 2006 Aug; 28(15):1159-62. PubMed ID: 16810450 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Ahmad I; Shim WY; Jeon WY; Yoon BH; Kim JH Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):199-204. PubMed ID: 21969058 [TBL] [Abstract][Full Text] [Related]
19. Xylitol production by NAD(+)-dependent xylitol dehydrogenase (xdhA)- and l-arabitol-4-dehydrogenase (ladA)-disrupted mutants of Aspergillus oryzae. Mahmud A; Hattori K; Hongwen C; Kitamoto N; Suzuki T; Nakamura K; Takamizawa K J Biosci Bioeng; 2013 Apr; 115(4):353-9. PubMed ID: 23287496 [TBL] [Abstract][Full Text] [Related]
20. [Expression of xylose-metabolic key genes of Trichoderma reesei on various carbon sources measured by a series of Northern hybridizations]. Wang T; Merja P; Gao P Wei Sheng Wu Xue Bao; 1999 Dec; 39(6):503-9. PubMed ID: 12555554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]