These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23247839)

  • 1. Classification of simultaneous movements using surface EMG pattern recognition.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Biomed Eng; 2013 May; 60(5):1250-8. PubMed ID: 23247839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A parallel classification strategy to simultaneous control elbow, wrist, and hand movements.
    Leone F; Gentile C; Cordella F; Gruppioni E; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2022 Jan; 19(1):10. PubMed ID: 35090512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification.
    Smith LH; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4223-6. PubMed ID: 24110664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
    Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G
    J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear mappings between discrete and simultaneous motions to decrease training burden of simultaneous pattern recognition myoelectric control.
    Ingraham KA; Smith LH; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1675-8. PubMed ID: 26736598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions.
    Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation.
    Dellacasa Bellingegni A; Gruppioni E; Colazzo G; Davalli A; Sacchetti R; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2017 Aug; 14(1):82. PubMed ID: 28807038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
    Ortiz-Catalan M; Håkansson B; Brånemark R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):756-64. PubMed ID: 24710833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selecting the optimal movement subset with different pattern recognition based EMG control algorithms.
    Al-Timemy AH; Khushaba RN; Escudero J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():315-318. PubMed ID: 28268340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure.
    Wurth SM; Hargrove LJ
    J Neuroeng Rehabil; 2014 May; 11():91. PubMed ID: 24886664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.
    Zhang X; Huang H
    J Neuroeng Rehabil; 2015 Feb; 12():18. PubMed ID: 25888946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confidence-based rejection for improved pattern recognition myoelectric control.
    Scheme EJ; Hudgins BS; Englehart KB
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1563-70. PubMed ID: 23322756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion recognition for simultaneous control of multifunctional transradial prostheses.
    Jiang N; Tian L; Fang P; Dai Y; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1603-6. PubMed ID: 24110009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications.
    Al-Quraishi MS; Ishak AJ; Ahmad SA; Hasan MK; Al-Qurishi M; Ghapanchizadeh H; Alamri A
    Med Biol Eng Comput; 2017 May; 55(5):747-758. PubMed ID: 27484411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechatronics platform to study prosthetic hand control using EMG signals.
    Geethanjali P
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):765-71. PubMed ID: 27278475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.