These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23248275)

  • 81. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells.
    Reinhard NR; van Helden SF; Anthony EC; Yin T; Wu YI; Goedhart J; Gadella TW; Hordijk PL
    Sci Rep; 2016 May; 6():25502. PubMed ID: 27147504
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cellular Application of Genetically Encoded Sensors and Impeders of AMPK.
    Miyamoto T; Rho E; Kim A; Inoue T
    Methods Mol Biol; 2018; 1732():255-272. PubMed ID: 29480481
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Measuring FRET using time-resolved FLIM.
    Morton PE; Parsons M
    Methods Mol Biol; 2011; 769():403-13. PubMed ID: 21748691
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Spatio-Temporal Quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected].
    Leray A; Padilla-Parra S; Roul J; Héliot L; Tramier M
    PLoS One; 2013; 8(7):e69335. PubMed ID: 23874948
    [TBL] [Abstract][Full Text] [Related]  

  • 85. FLIM-FRET Analysis of Ras Nanoclustering and Membrane-Anchorage.
    Parkkola H; Siddiqui FA; Oetken-Lindholm C; Abankwa D
    Methods Mol Biol; 2021; 2262():233-250. PubMed ID: 33977480
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics.
    Martin K; Reimann A; Fritz RD; Ryu H; Jeon NL; Pertz O
    Sci Rep; 2016 Feb; 6():21901. PubMed ID: 26912264
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Heterotrimeric G protein betagamma subunits stimulate FLJ00018, a guanine nucleotide exchange factor for Rac1 and Cdc42.
    Ueda H; Nagae R; Kozawa M; Morishita R; Kimura S; Nagase T; Ohara O; Yoshida S; Asano T
    J Biol Chem; 2008 Jan; 283(4):1946-53. PubMed ID: 18045877
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Investigating Plant Protein-Protein Interactions Using FRET-FLIM with a Focus on the Actin Cytoskeleton.
    Duckney P; Hussey PJ
    Methods Mol Biol; 2023; 2604():353-366. PubMed ID: 36773249
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Rho GTPase isoforms in cell motility: Don't fret, we have FRET.
    Donnelly SK; Bravo-Cordero JJ; Hodgson L
    Cell Adh Migr; 2014; 8(6):526-34. PubMed ID: 25482645
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors.
    Matsuda M; Terai K
    Pathol Int; 2020 Jul; 70(7):379-390. PubMed ID: 32270554
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Dynamic FRET-FLIM based screening of signal transduction pathways.
    Harkes R; Kukk O; Mukherjee S; Klarenbeek J; van den Broek B; Jalink K
    Sci Rep; 2021 Oct; 11(1):20711. PubMed ID: 34671065
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Coordinated balance of Rac1 and RhoA plays key roles in determining phagocytic appetite.
    Kim SY; Kim S; Bae DJ; Park SY; Lee GY; Park GM; Kim IS
    PLoS One; 2017; 12(4):e0174603. PubMed ID: 28376111
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells.
    Padilla-Parra S; Audugé N; Coppey-Moisan M; Tramier M
    Biophys J; 2008 Sep; 95(6):2976-88. PubMed ID: 18539634
    [TBL] [Abstract][Full Text] [Related]  

  • 94. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.
    Fujioka M; Asano Y; Nakada S; Ohba Y
    Methods Mol Biol; 2017; 1555():513-534. PubMed ID: 28092053
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics.
    Zadran S; Standley S; Wong K; Otiniano E; Amighi A; Baudry M
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):895-902. PubMed ID: 23053099
    [TBL] [Abstract][Full Text] [Related]  

  • 96. FRET imaging and statistical signal processing reveal positive and negative feedback loops regulating the morphology of randomly migrating HT-1080 cells.
    Kunida K; Matsuda M; Aoki K
    J Cell Sci; 2012 May; 125(Pt 10):2381-92. PubMed ID: 22344265
    [TBL] [Abstract][Full Text] [Related]  

  • 97. FRET efficiency measurement in a molecular tension probe with a low-cost frequency-domain fluorescence lifetime imaging microscope.
    Dumas JP; Jiang JY; Gates EM; Hoffman BD; Pierce MC; Boustany NN
    J Biomed Opt; 2019 Dec; 24(12):1-11. PubMed ID: 31884745
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: basis of biosensor construction, live imaging, and image processing.
    Aoki K; Kamioka Y; Matsuda M
    Dev Growth Differ; 2013 May; 55(4):515-22. PubMed ID: 23387795
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging.
    Scipioni L; Rossetta A; Tedeschi G; Gratton E
    Nat Methods; 2021 May; 18(5):542-550. PubMed ID: 33859440
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors.
    Kardash E; Bandemer J; Raz E
    Nat Protoc; 2011 Nov; 6(12):1835-46. PubMed ID: 22051797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.