BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23248285)

  • 1. Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece.
    Liu X; Hong MS; Shu S; Yu S; Korn ED
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):E33-40. PubMed ID: 23248285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the actin-activated MgATPase activity of Acanthamoeba myosin II by phosphorylation of serine 639 in motor domain loop 2.
    Liu X; Lee DY; Cai S; Yu S; Shu S; Levine RL; Korn ED
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):E23-32. PubMed ID: 23248278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional consequences of the proteolytic removal of regulatory serines from the nonhelical tailpiece of Acanthamoeba myosin II.
    Sathyamoorthy V; Atkinson MA; Bowers B; Korn ED
    Biochemistry; 1990 Apr; 29(15):3793-7. PubMed ID: 2160267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of Acanthamoeba myosin-II minifilaments. Definition of C-terminal residues required to form coiled-coils, dimers, and octamers.
    Turbedsky K; Pollard TD
    J Mol Biol; 2005 Jan; 345(2):351-61. PubMed ID: 15571727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the actin-activated ATPase activity of Acanthamoeba myosin II by copolymerization with phosphorylated and dephosphorylated peptides derived from the carboxyl-terminal end of the heavy chain.
    Ganguly C; Atkinson MA; Attri AK; Sathyamoorthy V; Bowers B; Korn ED
    J Biol Chem; 1990 Jun; 265(17):9993-8. PubMed ID: 2141027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution characterization of myosin IIC protein tailpiece and its effect on filament assembly.
    Rosenberg MM; Ronen D; Lahav N; Nazirov E; Ravid S; Friedler A
    J Biol Chem; 2013 Apr; 288(14):9779-9789. PubMed ID: 23426373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function studies on Acanthamoeba myosins IA, IB, and II.
    Korn ED; Atkinson MA; Brzeska H; Hammer JA; Jung G; Lynch TJ
    J Cell Biochem; 1988 Jan; 36(1):37-50. PubMed ID: 3277984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the regulatory phosphorylation site in Acanthamoeba myosin IC by using site-directed mutagenesis.
    Wang ZY; Wang F; Sellers JR; Korn ED; Hammer JA
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15200-5. PubMed ID: 9860946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of functional regions on the tail of Acanthamoeba myosin-II using recombinant fusion proteins. II. Assembly properties of tails with NH2- and COOH-terminal deletions.
    Sinard JH; Rimm DL; Pollard TD
    J Cell Biol; 1990 Dec; 111(6 Pt 1):2417-26. PubMed ID: 2177477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeras of Dictyostelium myosin II head and neck domains with Acanthamoeba or chicken smooth muscle myosin II tail domain have greatly increased and unregulated actin-dependent MgATPase activity.
    Liu X; Shu S; Yamashita RA; Xu Y; Korn ED
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12553-8. PubMed ID: 11058169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filament formation and actin-activated ATPase activity are abolished by proteolytic removal of a small peptide from the tip of the tail of the heavy chain of Acanthamoeba myosin II.
    Kuznicki J; Côté GP; Bowers B; Korn ED
    J Biol Chem; 1985 Feb; 260(3):1967-72. PubMed ID: 3155741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotides increase the internal flexibility of filaments of dephosphorylated Acanthamoeba myosin II.
    Redowicz MJ; Korn ED; Rau DC
    J Biol Chem; 1996 May; 271(21):12401-7. PubMed ID: 8647844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of heavy chain phosphorylation and solution conditions on the assembly of Acanthamoeba myosin-II.
    Sinard JH; Pollard TD
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1529-35. PubMed ID: 2793932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of assembly of Acanthamoeba myosin-II minifilaments: minifilaments assemble by three successive dimerization steps.
    Sinard JH; Stafford WF; Pollard TD
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1537-47. PubMed ID: 2793933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of Acanthamoeba myosin-II minifilaments. Model of anti-parallel dimers based on EM and X-ray diffraction of 2D and 3D crystals.
    Turbedsky K; Pollard TD; Yeager M
    J Mol Biol; 2005 Jan; 345(2):363-73. PubMed ID: 15571728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ATP and regulatory light-chain phosphorylation on the polymerization of mammalian nonmuscle myosin II.
    Liu X; Billington N; Shu S; Yu SH; Piszczek G; Sellers JR; Korn ED
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):E6516-E6525. PubMed ID: 28739905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of Acanthamoeba actomyosin ATPase activity by myosin-II polymerization.
    Kiehart DP; Pollard TD
    Nature; 1984 Apr 26-May 2; 308(5962):864-6. PubMed ID: 21510101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenylglyoxal reveals phosphorylation-dependent difference in the conformation of Acanthamoeba myosin II active site.
    Redowicz MJ
    Arch Biochem Biophys; 2000 Dec; 384(2):413-7. PubMed ID: 11368332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the COOH-terminal nonhelical tailpiece in the assembly of a vertebrate nonmuscle myosin rod.
    Hodge TP; Cross R; Kendrick-Jones J
    J Cell Biol; 1992 Sep; 118(5):1085-95. PubMed ID: 1512291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative dependence of the actin-activated Mg2+-ATPase activity of Acanthamoeba myosin II on the extent of filament phosphorylation.
    Atkinson MA; Lambooy PK; Korn ED
    J Biol Chem; 1989 Mar; 264(7):4127-32. PubMed ID: 2521858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.