These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23248622)

  • 1. Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: lessons from hydrothermal vent associated tubeworms from the mediterranean sea.
    Thiel V; Hügler M; Blümel M; Baumann HI; Gärtner A; Schmaljohann R; Strauss H; Garbe-Schönberg D; Petersen S; Cowart DA; Fisher CR; Imhoff JF
    Front Microbiol; 2012; 3():423. PubMed ID: 23248622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman Rise reveals new insights into metabolism and diversity.
    Reveillaud J; Anderson R; Reves-Sohn S; Cavanaugh C; Huber JA
    Microbiome; 2018 Jan; 6(1):19. PubMed ID: 29374496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm
    Leonard JM; Mitchell J; Beinart RA; Delaney JA; Sanders JG; Ellis G; Goddard EA; Girguis PR; Scott KM
    Appl Environ Microbiol; 2021 Aug; 87(17):e0079421. PubMed ID: 34190607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of proton-specific ATPase activities in plume and root tissues of two co-occurring hydrocarbon seep tubeworm species
    Dattagupta S; Redding M; Luley K; Fisher C
    Mar Biol; 2009; 156(4):779-786. PubMed ID: 24391234
    [No Abstract]   [Full Text] [Related]  

  • 5. Genetic Evidence for Two Carbon Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria.
    Rubin-Blum M; Dubilier N; Kleiner M
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30602523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression analysis reveals distinct alliances around two carbon fixation pathways in hydrothermal vent symbionts.
    Mitchell JH; Freedman AH; Delaney JA; Girguis PR
    Nat Microbiol; 2024 Jun; 9(6):1526-1539. PubMed ID: 38839975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent.
    Zimmermann J; Lott C; Weber M; Ramette A; Bright M; Dubilier N; Petersen JM
    Environ Microbiol; 2014 Dec; 16(12):3638-56. PubMed ID: 24552661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete gammaproteobacterial endosymbiont genome assembly from a seep tubeworm Lamellibrachia satsuma.
    Patra AK; Kwon YM; Yang Y
    J Microbiol; 2022 Sep; 60(9):916-927. PubMed ID: 35913594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization and endosymbiotic localization of the gene encoding D-ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) form II in the deep-sea vestimentiferan trophosome.
    Elsaied H; Kimura H; Naganuma T
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1947-1957. PubMed ID: 12055314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts.
    Girguis PR; Childress JJ; Freytag JK; Klose K; Stuber R
    J Exp Biol; 2002 Oct; 205(Pt 19):3055-66. PubMed ID: 12200408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila.
    Mitchell JH; Leonard JM; Delaney J; Girguis PR; Scott KM
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi.
    Li Y; Tassia MG; Waits DS; Bogantes VE; David KT; Halanych KM
    BMC Biol; 2019 Nov; 17(1):91. PubMed ID: 31739792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vestimentiferan on a whale fall.
    Feldman RA; Shank TM; Black MB; Baco AR; Smith CR; Vrijenhoek RC
    Biol Bull; 1998 Apr; 194(2):116-9. PubMed ID: 9604312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of population structure in Gulf of Mexico Seepiophila jonesi (Polychaeta, Siboglinidae) using cross-amplified microsatellite loci.
    Huang C; Schaeffer SW; Fisher CR; Cowart DA
    PeerJ; 2016; 4():e2366. PubMed ID: 27635334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies.
    Durkin A; Fisher CR; Cordes EE
    Naturwissenschaften; 2017 Aug; 104(7-8):63. PubMed ID: 28689349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genome of a vestimentiferan tubeworm (Ridgeia piscesae) provides insights into its adaptation to a deep-sea environment.
    Wang M; Ruan L; Liu M; Liu Z; He J; Zhang L; Wang Y; Shi H; Chen M; Yang F; Zeng R; He J; Guo C; Chen J
    BMC Genomics; 2023 Feb; 24(1):72. PubMed ID: 36774470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endosymbiont genomes yield clues of tubeworm success.
    Li Y; Liles MR; Halanych KM
    ISME J; 2018 Nov; 12(11):2785-2795. PubMed ID: 30022157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular phylogenetic and isotopic evidence of two lineages of chemoautotrophic endosymbionts distinct at the subdivision level harbored in one host-animal type: the genus Alviniconcha (Gastropoda: Provannidae).
    Suzuki Y; Sasaki T; Suzuki M; Tsuchida S; Nealson KH; Horikoshi K
    FEMS Microbiol Lett; 2005 Aug; 249(1):105-12. PubMed ID: 16000242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea).
    Lösekann T; Robador A; Niemann H; Knittel K; Boetius A; Dubilier N
    Environ Microbiol; 2008 Dec; 10(12):3237-54. PubMed ID: 18707616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila.
    Laue BE; Nelson DC
    J Bacteriol; 1994 Jun; 176(12):3723-9. PubMed ID: 8206850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.