These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23248991)

  • 1. Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon.
    Howell PC
    J Chem Phys; 2012 Dec; 137(22):224111. PubMed ID: 23248991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-phase simulation of the crystalline silicon melting line at pressures from -1 to 3 GPa.
    Dozhdikov VS; Basharin AY; Levashov PR
    J Chem Phys; 2012 Aug; 137(5):054502. PubMed ID: 22894359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of heat current formulations for equilibrium molecular dynamics calculations of thermal conductivity.
    Guajardo-Cuéllar A; Go DB; Sen M
    J Chem Phys; 2010 Mar; 132(10):104111. PubMed ID: 20232951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A homogeneous nonequilibrium molecular dynamics method for calculating thermal conductivity with a three-body potential.
    Mandadapu KK; Jones RE; Papadopoulos P
    J Chem Phys; 2009 May; 130(20):204106. PubMed ID: 19485436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of solid argon from molecular dynamics simulations.
    Tretiakov KV; Scandolo S
    J Chem Phys; 2004 Feb; 120(8):3765-9. PubMed ID: 15268540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential.
    Carrete J; Longo RC; Gallego LJ
    Nanotechnology; 2011 May; 22(18):185704. PubMed ID: 21427474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity of solid argon at high pressure and high temperature: a molecular dynamics study.
    Tretiakov KV; Scandolo S
    J Chem Phys; 2004 Dec; 121(22):11177-82. PubMed ID: 15634072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity of Si-Ge quantum dot superlattices.
    Haskins JB; Kınacı A; Cağın T
    Nanotechnology; 2011 Apr; 22(15):155701. PubMed ID: 21389580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity of ionic systems from equilibrium molecular dynamics.
    Salanne M; Marrocchelli D; Merlet C; Ohtori N; Madden PA
    J Phys Condens Matter; 2011 Mar; 23(10):102101. PubMed ID: 21335634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved interatomic potentials for silicon-fluorine and silicon-chlorine.
    Humbird D; Graves DB
    J Chem Phys; 2004 Feb; 120(5):2405-12. PubMed ID: 15268380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics.
    Kinaci A; Haskins JB; Çağın T
    J Chem Phys; 2012 Jul; 137(1):014106. PubMed ID: 22779636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties.
    Fan Z; Wang Y; Gu X; Qian P; Su Y; Ala-Nissila T
    J Phys Condens Matter; 2020 Mar; 32(13):135901. PubMed ID: 31775129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2004 May; 120(18):8676-82. PubMed ID: 15267797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of melting and sintering of Si nanoparticles: a comparison of different force fields and computational models.
    Sementa L; Barcaro G; Monti S; Carravetta V
    Phys Chem Chem Phys; 2018 Jan; 20(3):1707-1715. PubMed ID: 29265136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence in support of levitation effect as the reason for size dependence of ionic conductivity in water: a molecular dynamics simulation.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2006 Jun; 110(24):12179-90. PubMed ID: 16800534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametrization of analytic interatomic potential functions using neural networks.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Komanduri R
    J Chem Phys; 2008 Jul; 129(4):044111. PubMed ID: 18681638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials.
    Ohtori N; Salanne M; Madden PA
    J Chem Phys; 2009 Mar; 130(10):104507. PubMed ID: 19292541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis.
    Jones RE; Mandadapu KK
    J Chem Phys; 2012 Apr; 136(15):154102. PubMed ID: 22519310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous heat conduction behavior in thin finite-size silicon nanowires.
    Yang X; To AC; Tian R
    Nanotechnology; 2010 Apr; 21(15):155704. PubMed ID: 20332560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.