These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23249033)

  • 1. Impact of anisotropic atomic motions in proteins on powder-averaged incoherent neutron scattering intensities.
    Kneller GR; Chevrot G
    J Chem Phys; 2012 Dec; 137(22):225101. PubMed ID: 23249033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic incoherent neutron scattering operating by varying instrumental energy resolution: principle, simulations, and experiments of the resolution elastic neutron scattering (RENS).
    Magazù S; Migliardo F; Benedetto A
    Rev Sci Instrum; 2011 Oct; 82(10):105115. PubMed ID: 22047337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative model for the heterogeneity of atomic position fluctuations in proteins: a simulation study.
    Kneller GR; Hinsen K
    J Chem Phys; 2009 Jul; 131(4):045104. PubMed ID: 19655925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein dynamics in solution and powder measured by incoherent elastic neutron scattering: the influence of Q-range and energy resolution.
    Gabel F
    Eur Biophys J; 2005 Feb; 34(1):1-12. PubMed ID: 15378211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Dynamical Heterogeneity from Dynamic Neutron Scattering of Proteins.
    Vural D; Smith JC; Glyde HR
    Biophys J; 2018 May; 114(10):2397-2407. PubMed ID: 29580551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the influence of finite instrumental resolution on elastic neutron scattering intensities from proteins.
    Kneller GR; Calandrini V
    J Chem Phys; 2007 Mar; 126(12):125107. PubMed ID: 17411169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering.
    Peters J; Kneller GR
    J Chem Phys; 2013 Oct; 139(16):165102. PubMed ID: 24182083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of protein dynamics as affected by sugars: a neutron scattering study.
    Magazù S; Romeo G; Telling MT
    Eur Biophys J; 2007 Sep; 36(7):685-91. PubMed ID: 17657485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motional displacements in proteins: The origin of wave-vector-dependent values.
    Vural D; Hong L; Smith JC; Glyde HR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052705. PubMed ID: 26066197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments.
    Doster W; Nakagawa H; Appavou MS
    J Chem Phys; 2013 Jul; 139(4):045105. PubMed ID: 23902030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics.
    Caronna C; Natali F; Cupane A
    Biophys Chem; 2005 Aug; 116(3):219-25. PubMed ID: 15908102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein dynamics as seen by (quasi) elastic neutron scattering.
    Magazù S; Mezei F; Falus P; Farago B; Mamontov E; Russina M; Migliardo F
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3504-3512. PubMed ID: 27476795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic incoherent neutron scattering as a probe of high pressure induced changes in protein flexibility.
    Filabozzi A; Deriu A; Di Bari MT; Russo D; Croci S; Di Venere A
    Biochim Biophys Acta; 2010 Jan; 1804(1):63-7. PubMed ID: 19735743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-controlled protein dynamics observed with neutron spin echo measurements.
    Wang SC; Mirarefi P; Faraone A; Lee CT
    Biochemistry; 2011 Sep; 50(38):8150-62. PubMed ID: 21809812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three classes of motion in the dynamic neutron-scattering susceptibility of a globular protein.
    Hong L; Smolin N; Lindner B; Sokolov AP; Smith JC
    Phys Rev Lett; 2011 Sep; 107(14):148102. PubMed ID: 22107237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic small amplitude Peptide plane dynamics in proteins from residual dipolar couplings.
    Bernadó P; Blackledge M
    J Am Chem Soc; 2004 Apr; 126(15):4907-20. PubMed ID: 15080696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasielastic neutron scattering and relaxation processes in proteins: analytical and simulation-based models.
    Kneller GR
    Phys Chem Chem Phys; 2005 Jul; 7(13):2641-55. PubMed ID: 16189576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mean square displacements from elastic incoherent neutron scattering evaluated by spectrometers working with different energy resolution on dry and hydrated (H2O and D2O) lysozyme.
    Magazù S; Migliardo F; Benedetto A
    J Phys Chem B; 2010 Jul; 114(28):9268-74. PubMed ID: 20575549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of relay helix functional dynamics and feasibility of experimental verification by neutron scattering.
    Satarić MV; Zdravković S; Tuszyński JA
    Chaos; 2011 Dec; 21(4):043135. PubMed ID: 22225372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal motions of actin characterized by quasielastic neutron scattering.
    Fujiwara S; Plazanet M; Matsumoto F; Oda T
    Eur Biophys J; 2011 May; 40(5):661-71. PubMed ID: 21249494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.