These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 23249045)
1. Theoretical study of charge recombination at the TiO2-electrolyte interface in dye sensitised solar cells. Maggio E; Martsinovich N; Troisi A J Chem Phys; 2012 Dec; 137(22):22A508. PubMed ID: 23249045 [TBL] [Abstract][Full Text] [Related]
2. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2. Duncan WR; Craig CF; Prezhdo OV J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405 [TBL] [Abstract][Full Text] [Related]
3. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells. Salvador P; Hidalgo MG; Zaban A; Bisquert J J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020 [TBL] [Abstract][Full Text] [Related]
4. Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid. Bai Y; Zhang J; Wang Y; Zhang M; Wang P Langmuir; 2011 Apr; 27(8):4749-55. PubMed ID: 21438523 [TBL] [Abstract][Full Text] [Related]
5. Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells. Hao F; Jiao X; Li J; Lin H Nanoscale; 2013 Jan; 5(2):726-33. PubMed ID: 23223876 [TBL] [Abstract][Full Text] [Related]
6. Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Griffith MJ; Sunahara K; Wagner P; Wagner K; Wallace GG; Officer DL; Furube A; Katoh R; Mori S; Mozer AJ Chem Commun (Camb); 2012 May; 48(35):4145-62. PubMed ID: 22441329 [TBL] [Abstract][Full Text] [Related]
7. Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells. Barnes PR; Anderson AY; Juozapavicius M; Liu L; Li X; Palomares E; Forneli A; O'Regan BC Phys Chem Chem Phys; 2011 Feb; 13(8):3547-58. PubMed ID: 21173970 [TBL] [Abstract][Full Text] [Related]
8. Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour. Barnes PR; Anderson AY; Durrant JR; O'Regan BC Phys Chem Chem Phys; 2011 Apr; 13(13):5798-816. PubMed ID: 21327204 [TBL] [Abstract][Full Text] [Related]
9. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance. Marinado T; Hagberg DP; Hedlund M; Edvinsson T; Johansson EM; Boschloo G; Rensmo H; Brinck T; Sun L; Hagfeldt A Phys Chem Chem Phys; 2009 Jan; 11(1):133-41. PubMed ID: 19081916 [TBL] [Abstract][Full Text] [Related]
10. Continuum and atomistic description of excess electrons in TiO2. Maggio E; Martsinovich N; Troisi A J Phys Condens Matter; 2016 Feb; 28(7):074004. PubMed ID: 26808551 [TBL] [Abstract][Full Text] [Related]
11. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of the photoexcited electron at the chromophore-semiconductor interface. Prezhdo OV; Duncan WR; Prezhdo VV Acc Chem Res; 2008 Feb; 41(2):339-48. PubMed ID: 18281950 [TBL] [Abstract][Full Text] [Related]
13. Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. Boschloo G; Häggman L; Hagfeldt A J Phys Chem B; 2006 Jul; 110(26):13144-50. PubMed ID: 16805626 [TBL] [Abstract][Full Text] [Related]
14. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. O'Regan BC; Durrant JR Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041 [TBL] [Abstract][Full Text] [Related]
15. Anion-correlated conduction band edge shifts and charge transfer kinetics in dye-sensitized solar cells with ionic liquid electrolytes. Zhang M; Zhang J; Bai Y; Wang Y; Su M; Wang P Phys Chem Chem Phys; 2011 Mar; 13(9):3788-94. PubMed ID: 21184000 [TBL] [Abstract][Full Text] [Related]
16. Theoretical investigation on structural and electronic properties of organic dye C258 on TiO₂(101) surface in dye-sensitized solar cells. Sun PP; Li QS; Yang LN; Sun ZZ; Li ZS Phys Chem Chem Phys; 2014 Oct; 16(39):21827-37. PubMed ID: 25201320 [TBL] [Abstract][Full Text] [Related]
17. The influence of dye structure on charge recombination in dye-sensitized solar cells. Jennings JR; Liu Y; Wang Q; Zakeeruddin SM; Grätzel M Phys Chem Chem Phys; 2011 Apr; 13(14):6637-48. PubMed ID: 21380426 [TBL] [Abstract][Full Text] [Related]
18. Effect of solvent and additives on the open-circuit voltage of ZnO-based dye-sensitized solar cells: a combined theoretical and experimental study. Le Bahers T; Labat F; Pauporté T; Ciofini I Phys Chem Chem Phys; 2010 Nov; 12(44):14710-9. PubMed ID: 20949189 [TBL] [Abstract][Full Text] [Related]
19. Coupled analysis of steady-state and dynamic characteristics of dye-sensitized solar cells for determination of conduction band movement and recombination parameters. Shi Y; Dong X Phys Chem Chem Phys; 2013 Jan; 15(1):299-306. PubMed ID: 23165346 [TBL] [Abstract][Full Text] [Related]
20. Alignment of the dye's molecular levels with the TiO(2) band edges in dye-sensitized solar cells: a DFT-TDDFT study. De Angelis F; Fantacci S; Selloni A Nanotechnology; 2008 Oct; 19(42):424002. PubMed ID: 21832662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]