These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 23249072)

  • 1. Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation.
    Huo P; Coker DF
    J Chem Phys; 2012 Dec; 137(22):22A535. PubMed ID: 23249072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution.
    Huo P; Coker DF
    J Chem Phys; 2011 Nov; 135(20):201101. PubMed ID: 22128918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting.
    Huo P; Coker DF
    J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iterative linearized approach to nonadiabatic dynamics.
    Dunkel ER; Bonella S; Coker DF
    J Chem Phys; 2008 Sep; 129(11):114106. PubMed ID: 19044949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Born-Oppenheimer Liouville-von Neumann Dynamics. Evolution of a Subsystem Controlled by Linear and Population-Driven Decay of Mixing with Decoherent and Coherent Switching.
    Zhu C; Jasper AW; Truhlar DG
    J Chem Theory Comput; 2005 Jul; 1(4):527-40. PubMed ID: 26641672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mixed quantum-classical Liouville study of the population dynamics in a model photo-induced condensed phase electron transfer reaction.
    Rekik N; Hsieh CY; Freedman H; Hanna G
    J Chem Phys; 2013 Apr; 138(14):144106. PubMed ID: 24981527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coherent state approach to semiclassical nonadiabatic dynamics.
    Song X; Van Voorhis T
    J Chem Phys; 2006 Apr; 124(13):134104. PubMed ID: 16613446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonadiabatic dynamics in open quantum-classical systems: forward-backward trajectory solution.
    Hsieh CY; Kapral R
    J Chem Phys; 2012 Dec; 137(22):22A507. PubMed ID: 23249044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum wave packet ab initio molecular dynamics: an approach to study quantum dynamics in large systems.
    Iyengar SS; Jakowski J
    J Chem Phys; 2005 Mar; 122(11):114105. PubMed ID: 15836199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced density matrix hybrid approach: an efficient and accurate method for adiabatic and non-adiabatic quantum dynamics.
    Berkelbach TC; Reichman DR; Markland TE
    J Chem Phys; 2012 Jan; 136(3):034113. PubMed ID: 22280750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-state trajectory approach to non-adiabatic dynamics: General formalism and the active state trajectory approximation.
    Tao G
    J Chem Phys; 2017 Jul; 147(4):044107. PubMed ID: 28764382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path integral formulation for quantum nonadiabatic dynamics and the mixed quantum classical limit.
    Krishna V
    J Chem Phys; 2007 Apr; 126(13):134107. PubMed ID: 17430016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-classical path integral with self-consistent solvent-driven reference propagators.
    Banerjee T; Makri N
    J Phys Chem B; 2013 Oct; 117(42):13357-66. PubMed ID: 23889089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiclassical description of electronically nonadiabatic dynamics via the initial value representation.
    Ananth N; Venkataraman C; Miller WH
    J Chem Phys; 2007 Aug; 127(8):084114. PubMed ID: 17764236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoherence and quantum-classical master equation dynamics.
    Grunwald R; Kapral R
    J Chem Phys; 2007 Mar; 126(11):114109. PubMed ID: 17381198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adiabatic linearized path integral approach for quantum time correlation functions: electronic transport in metal-molten salt solutions.
    Causo MS; Ciccotti G; Montemayor D; Bonella S; Coker DF
    J Phys Chem B; 2005 Apr; 109(14):6855-65. PubMed ID: 16851772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoherence-induced surface hopping.
    Jaeger HM; Fischer S; Prezhdo OV
    J Chem Phys; 2012 Dec; 137(22):22A545. PubMed ID: 23249082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regarding the validity of the time-dependent Kohn-Sham approach for electron-nuclear dynamics via trajectory surface hopping.
    Fischer SA; Habenicht BF; Madrid AB; Duncan WR; Prezhdo OV
    J Chem Phys; 2011 Jan; 134(2):024102. PubMed ID: 21241075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polaron formation: Ehrenfest dynamics vs. exact results.
    Li G; Movaghar B; Nitzan A; Ratner MA
    J Chem Phys; 2013 Jan; 138(4):044112. PubMed ID: 23387573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.