These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23249083)

  • 1. Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations.
    Schleife A; Draeger EW; Kanai Y; Correa AA
    J Chem Phys; 2012 Dec; 137(22):22A546. PubMed ID: 23249083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ODE integration schemes for plane-wave real-time time-dependent density functional theory.
    Rehn DA; Shen Y; Buchholz ME; Dubey M; Namburu R; Reed EJ
    J Chem Phys; 2019 Jan; 150(1):014101. PubMed ID: 30621412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate time propagation method for the coupled Maxwell and Kohn-Sham equations.
    Li Y; He S; Russakoff A; Varga K
    Phys Rev E; 2016 Aug; 94(2-1):023314. PubMed ID: 27627419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: Consistent formalism, implementation, and performance.
    Send R; Furche F
    J Chem Phys; 2010 Jan; 132(4):044107. PubMed ID: 20113019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python.
    De Santis M; Storchi L; Belpassi L; Quiney HM; Tarantelli F
    J Chem Theory Comput; 2020 Apr; 16(4):2410-2429. PubMed ID: 32101419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
    Gómez Pueyo A; Marques MAL; Rubio A; Castro A
    J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital- and state-dependent functionals in density-functional theory.
    Görling A
    J Chem Phys; 2005 Aug; 123(6):62203. PubMed ID: 16122289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turbo charging time-dependent density-functional theory with Lanczos chains.
    Rocca D; Gebauer R; Saad Y; Baroni S
    J Chem Phys; 2008 Apr; 128(15):154105. PubMed ID: 18433188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A full implementation of the response iteration scheme for density functional calculations.
    Krotscheck E; Liebrecht M
    J Chem Phys; 2013 Apr; 138(16):164114. PubMed ID: 23635118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-interaction correction in a real-time Kohn-Sham scheme: access to difficult excitations in time-dependent density functional theory.
    Hofmann D; Kümmel S
    J Chem Phys; 2012 Aug; 137(6):064117. PubMed ID: 22897265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing the random phase approximation into a practical post-Kohn-Sham correlation model.
    Furche F
    J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability analysis of second- and fourth-order finite-difference modelling of wave propagation in orthotropic media.
    Veres IA
    Ultrasonics; 2010 Mar; 50(3):431-8. PubMed ID: 19913266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent density functional theory beyond Kohn-Sham Slater determinants.
    Fuks JI; Nielsen SE; Ruggenthaler M; Maitra NT
    Phys Chem Chem Phys; 2016 Aug; 18(31):20976-85. PubMed ID: 27010732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.
    Vadali RV; Shi Y; Kumar S; Kale LV; Tuckerman ME; Martyna GJ
    J Comput Chem; 2004 Dec; 25(16):2006-22. PubMed ID: 15473008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity.
    Jiang H; Engel E
    J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent density-functional theory in massively parallel computer architectures: the OCTOPUS project.
    Andrade X; Alberdi-Rodriguez J; Strubbe DA; Oliveira MJ; Nogueira F; Castro A; Muguerza J; Arruabarrena A; Louie SG; Aspuru-Guzik A; Rubio A; Marques MA
    J Phys Condens Matter; 2012 Jun; 24(23):233202. PubMed ID: 22562950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of identity Dirac-Kohn-Sham method using the large component only: Calculations of g-tensor and hyperfine tensor.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin I; Kaupp M
    J Chem Phys; 2006 Feb; 124(8):084108. PubMed ID: 16512709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear algorithm for the solution of the Kohn-Sham equations in solids.
    Wang J; Wang Y; Yu S; Kolb D
    J Phys Condens Matter; 2005 Jun; 17(25):3701-15. PubMed ID: 21690691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.