These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23249265)

  • 1. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.
    Shahrjerdi D; Bedell SW
    Nano Lett; 2013 Jan; 13(1):315-20. PubMed ID: 23249265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
    Cao Q; Kim HS; Pimparkar N; Kulkarni JP; Wang C; Shim M; Roy K; Alam MA; Rogers JA
    Nature; 2008 Jul; 454(7203):495-500. PubMed ID: 18650920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.
    Kim DK; Lai Y; Diroll BT; Murray CB; Kagan CR
    Nat Commun; 2012; 3():1216. PubMed ID: 23169057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultra-lightweight design for imperceptible plastic electronics.
    Kaltenbrunner M; Sekitani T; Reeder J; Yokota T; Kuribara K; Tokuhara T; Drack M; Schwödiauer R; Graz I; Bauer-Gogonea S; Bauer S; Someya T
    Nature; 2013 Jul; 499(7459):458-63. PubMed ID: 23887430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil.
    Zhang H; Xiang L; Yang Y; Xiao M; Han J; Ding L; Zhang Z; Hu Y; Peng LM
    ACS Nano; 2018 Mar; 12(3):2773-2779. PubMed ID: 29378119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale integration of semiconductor nanowires for high-performance flexible electronics.
    Liu X; Long YZ; Liao L; Duan X; Fan Z
    ACS Nano; 2012 Mar; 6(3):1888-900. PubMed ID: 22364279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible and tunable silicon photonic circuits on plastic substrates.
    Chen Y; Li H; Li M
    Sci Rep; 2012; 2():622. PubMed ID: 22953043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanically Flexible and High-Performance CMOS Logic Circuits.
    Honda W; Arie T; Akita S; Takei K
    Sci Rep; 2015 Oct; 5():15099. PubMed ID: 26459882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology: high-speed integrated nanowire circuits.
    Friedman RS; McAlpine MC; Ricketts DS; Ham D; Lieber CM
    Nature; 2005 Apr; 434(7037):1085. PubMed ID: 15858562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic Conductive Cellulose Mats by Solution Blow Spinning as Substrate and a Dielectric Interstrate Layer for Flexible Electronics.
    Claro PIC; Cunha I; Paschoalin RT; Gaspar D; Miranda K; Oliveira ON; Martins R; Pereira L; Marconcini JM; Fortunato E; Mattoso LHC
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26237-26246. PubMed ID: 34038087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous Functional Dielectric Patterns for Charge-Carrier Modulation in Ultraflexible Organic Integrated Circuits.
    Taguchi K; Uemura T; Namba N; Petritz A; Araki T; Sugiyama M; Stadlober B; Sekitani T
    Adv Mater; 2021 Nov; 33(45):e2104446. PubMed ID: 34545628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications.
    Wang C; Chien JC; Takei K; Takahashi T; Nah J; Niknejad AM; Javey A
    Nano Lett; 2012 Mar; 12(3):1527-33. PubMed ID: 22313389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale complementary integrated circuits based on organic transistors.
    Crone B; Dodabalapur A; Lin YY; Filas RW; Bao Z; LaDuca A; Sarpeshkar R; Katz HE; Li W
    Nature; 2000 Feb; 403(6769):521-3. PubMed ID: 10676955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.
    Nomura K; Ohta H; Takagi A; Kamiya T; Hirano M; Hosono H
    Nature; 2004 Nov; 432(7016):488-92. PubMed ID: 15565150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible molecular-scale electronic devices.
    Park S; Wang G; Cho B; Kim Y; Song S; Ji Y; Yoon MH; Lee T
    Nat Nanotechnol; 2012 Jun; 7(7):438-42. PubMed ID: 22659606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated silicon and silicon nitride photonic circuits on flexible substrates.
    Chen Y; Li M
    Opt Lett; 2014 Jun; 39(12):3449-52. PubMed ID: 24978508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-Tuning the Performance of Ultraflexible Organic Complementary Circuits on a Single Substrate via a Nanoscale Interfacial Photochemical Reaction.
    Taguchi K; Uemura T; Petritz A; Namba N; Akiyama M; Sugiyama M; Araki T; Stadlober B; Sekitani T
    ACS Appl Electron Mater; 2022 Dec; 4(12):6308-6321. PubMed ID: 36588622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Frontier of Printed Electronics: Flexible Hybrid Electronics.
    Khan Y; Thielens A; Muin S; Ting J; Baumbauer C; Arias AC
    Adv Mater; 2020 Apr; 32(15):e1905279. PubMed ID: 31742812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.