These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23249300)

  • 1. Interplay between structure and relaxations in perfluorosulfonic acid proton conducting membranes.
    Giffin GA; Haugen GM; Hamrock SJ; Di Noto V
    J Am Chem Soc; 2013 Jan; 135(2):822-34. PubMed ID: 23249300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes.
    Di Noto V; Gliubizzi R; Negro E; Pace G
    J Phys Chem B; 2006 Dec; 110(49):24972-86. PubMed ID: 17149919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between mechanical, electrical, and thermal relaxations in nanocomposite proton conducting membranes based on Nafion and a [(ZrO2)·(Ta2O5)(0.119)] core-shell nanofiller.
    Di Noto V; Piga M; Giffin GA; Vezzù K; Zawodzinski TA
    J Am Chem Soc; 2012 Nov; 134(46):19099-107. PubMed ID: 23102554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hydrogen bond reorganization and equivalent weight on proton transfer in 3M perfluorosulfonic acid ionomers.
    Clark JK; Paddison SJ; Hamrock SJ
    Phys Chem Chem Phys; 2012 Dec; 14(47):16349-59. PubMed ID: 23132287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alcohol and proton transport in perfluorinated ionomer membranes for fuel cells.
    Saito M; Tsuzuki S; Hayamizu K; Okada T
    J Phys Chem B; 2006 Dec; 110(48):24410-7. PubMed ID: 17134195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructure evolution in high-temperature perfluorosulfonic acid ionomer membrane by small-angle X-ray scattering.
    Mistry MK; Choudhury NR; Dutta NK; Knott R
    Langmuir; 2010 Dec; 26(24):19073-83. PubMed ID: 21090663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes.
    Wescott JT; Qi Y; Subramanian L; Capehart TW
    J Chem Phys; 2006 Apr; 124(13):134702. PubMed ID: 16613463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the hydration and diffusion of protons in perfluorosulfonic acid membranes with molecular dynamics simulations. scui@utk.edu.
    Cui S; Liu J; Selvan ME; Paddison SJ; Keffer DJ; Edwards BJ
    J Phys Chem B; 2008 Oct; 112(42):13273-84. PubMed ID: 18826266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-property interplay of proton conducting membranes based on PBI5N, SiO2-Im and H3PO4 for high temperature fuel cells.
    Di Noto V; Piga M; Giffin GA; Quartarone E; Righetti P; Mustarelli P; Magistris A
    Phys Chem Chem Phys; 2011 Jul; 13(26):12146-54. PubMed ID: 21594297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscale modeling of hydrated morphologies of 3M perfluorosulfonic acid-based fuel cell electrolytes.
    Wu D; Paddison SJ; Elliott JA; Hamrock SJ
    Langmuir; 2010 Sep; 26(17):14308-15. PubMed ID: 20704341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular modeling of proton transport in the short-side-chain perfluorosulfonic acid ionomer.
    Hristov IH; Paddison SJ; Paul R
    J Phys Chem B; 2008 Mar; 112(10):2937-49. PubMed ID: 18281980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of water on the changes in morphology and proton conductivity for the highly crystalline hydrocarbon polymer electrolyte membrane for fuel cells.
    Barique MA; Wu L; Takimoto N; Kidena K; Ohira A
    J Phys Chem B; 2009 Dec; 113(49):15921-7. PubMed ID: 19908869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New anhydrous proton exchange membrane for intermediate temperature proton exchange membrane fuel cells.
    Sun B; Song H; Qiu X; Zhu W
    Chemphyschem; 2011 Apr; 12(6):1196-201. PubMed ID: 21472959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications.
    Asano N; Aoki M; Suzuki S; Miyatake K; Uchida H; Watanabe M
    J Am Chem Soc; 2006 Feb; 128(5):1762-9. PubMed ID: 16448153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity.
    Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(arylene ether)s containing superacid groups as proton exchange membranes.
    Mikami T; Miyatake K; Watanabe M
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1714-21. PubMed ID: 20491452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells.
    Saito M; Hayamizu K; Okada T
    J Phys Chem B; 2005 Mar; 109(8):3112-9. PubMed ID: 16851330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of morphology and proton transport in PFSA membranes.
    Elliott JA; Paddison SJ
    Phys Chem Chem Phys; 2007 Jun; 9(21):2602-18. PubMed ID: 17627306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing advanced alkaline polymer electrolytes for fuel cell applications.
    Pan J; Chen C; Zhuang L; Lu J
    Acc Chem Res; 2012 Mar; 45(3):473-81. PubMed ID: 22075175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.