These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23249300)

  • 21. Anhydrous proton-conducting polymeric electrolytes for fuel cells.
    Narayanan SR; Yen SP; Liu L; Greenbaum SG
    J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison between highly crystalline and low crystalline poly(phenylene sulfide) as polymer electrolyte membranes for fuel cells.
    Barique MA; Seesukphronrarak S; Wu L; Ohira A
    J Phys Chem B; 2011 Jan; 115(1):27-33. PubMed ID: 21158407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes.
    Yao Y; Ji L; Lin Z; Li Y; Alcoutlabi M; Hamouda H; Zhang X
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3732-7. PubMed ID: 21838242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network.
    Luo X; Holdcroft S; Mani A; Zhang Y; Shi Z
    Phys Chem Chem Phys; 2011 Oct; 13(40):18055-62. PubMed ID: 21915410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells.
    Mochizuki T; Kakinuma K; Uchida M; Deki S; Watanabe M; Miyatake K
    ChemSusChem; 2014 Mar; 7(3):729-33. PubMed ID: 24578201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulfonic and phosphonic acid and bifunctional organic-inorganic hybrid membranes and their proton conduction properties.
    Sel O; Azais T; Maréchal M; Gébel G; Laberty-Robert C; Sanchez C
    Chem Asian J; 2011 Nov; 6(11):2992-3000. PubMed ID: 21850711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Infrared spectroscopy of bis[(perfluoroalkyl)sulfonyl] imide ionomer membrane materials.
    Byun CK; Sharif I; Desmarteau DD; Creager SE; Korzeniewski C
    J Phys Chem B; 2009 May; 113(18):6299-304. PubMed ID: 19402725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anhydrous proton-conducting membrane based on poly-2-vinylpyridinium dihydrogenphosphate for electrochemical applications.
    Yang B; Manohar A; Prakash GK; Chen W; Narayanan SR
    J Phys Chem B; 2011 Dec; 115(49):14462-8. PubMed ID: 22029863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface characterization of argon-plasma-modified perfluorosulfonic acid membranes.
    Bae B; Kim D; Kim HJ; Lim TH; Oh IH; Ha HY
    J Phys Chem B; 2006 Mar; 110(9):4240-6. PubMed ID: 16509719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells.
    Zeng J; Zhou Y; Li L; Jiang SP
    Phys Chem Chem Phys; 2011 Jun; 13(21):10249-57. PubMed ID: 21541370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfonated polyimide/acid-functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties.
    Pandey RP; Thakur AK; Shahi VK
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16993-7002. PubMed ID: 25207457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anion conductive block poly(arylene ether)s: synthesis, properties, and application in alkaline fuel cells.
    Tanaka M; Fukasawa K; Nishino E; Yamaguchi S; Yamada K; Tanaka H; Bae B; Miyatake K; Watanabe M
    J Am Chem Soc; 2011 Jul; 133(27):10646-54. PubMed ID: 21657275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun Hybrid Perfluorosulfonic Acid/Sulfonated Silica Composite Membranes.
    Santos LD; Powers D; Wycisk R; Pintauro PN
    Membranes (Basel); 2020 Sep; 10(10):. PubMed ID: 32977438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial distribution and dynamics of proton conductivity in fuel cell membranes: potential and limitations of electrochemical atomic force microscopy measurements.
    Aleksandrova E; Hink S; Hiesgen R; Roduner E
    J Phys Condens Matter; 2011 Jun; 23(23):234109. PubMed ID: 21613704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance.
    Kannan R; Parthasarathy M; Maraveedu SU; Kurungot S; Pillai VK
    Langmuir; 2009 Jul; 25(14):8299-305. PubMed ID: 19594190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared spectroscopic and conductivity studies of ureasil-based proton conducting membranes for medium temperature fuel cell applications.
    Vince J; Vuk AŠ; Stangar UL; Perše LS; Orel B; Hočevar S
    Acta Chim Slov; 2010 Dec; 57(4):855-65. PubMed ID: 24061888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton conduction in exchange membranes across multiple length scales.
    Jorn R; Savage J; Voth GA
    Acc Chem Res; 2012 Nov; 45(11):2002-10. PubMed ID: 22594551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(dimethyl siloxane) membrane for high temperature proton exchange membrane fuel cells.
    Ghil LJ; Kim CK; Kang JS; Kim YT; Rhee HW
    J Nanosci Nanotechnol; 2009 Dec; 9(12):6918-22. PubMed ID: 19908698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.