These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 23249300)
21. Anhydrous proton-conducting polymeric electrolytes for fuel cells. Narayanan SR; Yen SP; Liu L; Greenbaum SG J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680 [TBL] [Abstract][Full Text] [Related]
22. A comparison between highly crystalline and low crystalline poly(phenylene sulfide) as polymer electrolyte membranes for fuel cells. Barique MA; Seesukphronrarak S; Wu L; Ohira A J Phys Chem B; 2011 Jan; 115(1):27-33. PubMed ID: 21158407 [TBL] [Abstract][Full Text] [Related]
23. Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes. Yao Y; Ji L; Lin Z; Li Y; Alcoutlabi M; Hamouda H; Zhang X ACS Appl Mater Interfaces; 2011 Sep; 3(9):3732-7. PubMed ID: 21838242 [TBL] [Abstract][Full Text] [Related]
24. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network. Luo X; Holdcroft S; Mani A; Zhang Y; Shi Z Phys Chem Chem Phys; 2011 Oct; 13(40):18055-62. PubMed ID: 21915410 [TBL] [Abstract][Full Text] [Related]
25. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells. Mochizuki T; Kakinuma K; Uchida M; Deki S; Watanabe M; Miyatake K ChemSusChem; 2014 Mar; 7(3):729-33. PubMed ID: 24578201 [TBL] [Abstract][Full Text] [Related]
26. Sulfonic and phosphonic acid and bifunctional organic-inorganic hybrid membranes and their proton conduction properties. Sel O; Azais T; Maréchal M; Gébel G; Laberty-Robert C; Sanchez C Chem Asian J; 2011 Nov; 6(11):2992-3000. PubMed ID: 21850711 [TBL] [Abstract][Full Text] [Related]
34. The curious case of the hydrated proton. Knight C; Voth GA Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071 [TBL] [Abstract][Full Text] [Related]
35. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
36. Spatial distribution and dynamics of proton conductivity in fuel cell membranes: potential and limitations of electrochemical atomic force microscopy measurements. Aleksandrova E; Hink S; Hiesgen R; Roduner E J Phys Condens Matter; 2011 Jun; 23(23):234109. PubMed ID: 21613704 [TBL] [Abstract][Full Text] [Related]
37. Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance. Kannan R; Parthasarathy M; Maraveedu SU; Kurungot S; Pillai VK Langmuir; 2009 Jul; 25(14):8299-305. PubMed ID: 19594190 [TBL] [Abstract][Full Text] [Related]
38. Infrared spectroscopic and conductivity studies of ureasil-based proton conducting membranes for medium temperature fuel cell applications. Vince J; Vuk AŠ; Stangar UL; Perše LS; Orel B; Hočevar S Acta Chim Slov; 2010 Dec; 57(4):855-65. PubMed ID: 24061888 [TBL] [Abstract][Full Text] [Related]
39. Proton conduction in exchange membranes across multiple length scales. Jorn R; Savage J; Voth GA Acc Chem Res; 2012 Nov; 45(11):2002-10. PubMed ID: 22594551 [TBL] [Abstract][Full Text] [Related]
40. Poly(dimethyl siloxane) membrane for high temperature proton exchange membrane fuel cells. Ghil LJ; Kim CK; Kang JS; Kim YT; Rhee HW J Nanosci Nanotechnol; 2009 Dec; 9(12):6918-22. PubMed ID: 19908698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]