These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23249334)

  • 1. Plasma-based biofunctionalization of vascular implants.
    Wise SG; Waterhouse A; Kondyurin A; Bilek MM; Weiss AS
    Nanomedicine (Lond); 2012 Dec; 7(12):1907-16. PubMed ID: 23249334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo biocompatibility of a plasma-activated, coronary stent coating.
    Waterhouse A; Wise SG; Yin Y; Wu B; James B; Zreiqat H; McKenzie DR; Bao S; Weiss AS; Ng MK; Bilek MM
    Biomaterials; 2012 Nov; 33(32):7984-92. PubMed ID: 22889486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mussel-inspired coating of polydopamine directs endothelial and smooth muscle cell fate for re-endothelialization of vascular devices.
    Yang Z; Tu Q; Zhu Y; Luo R; Li X; Xie Y; Maitz MF; Wang J; Huang N
    Adv Healthc Mater; 2012 Sep; 1(5):548-59. PubMed ID: 23184789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomolecular modification of implant surfaces.
    Morra M
    Expert Rev Med Devices; 2007 May; 4(3):361-72. PubMed ID: 17488230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically Robust Plasma-Activated Interfaces Optimized for Vascular Stent Applications.
    Santos M; Filipe EC; Michael PL; Hung J; Wise SG; Bilek MM
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9635-50. PubMed ID: 27015083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.
    Bayram C; Mizrak AK; Aktürk S; Kurşaklioğlu H; Iyisoy A; Ifran A; Denkbaş EB
    Biomed Mater; 2010 Oct; 5(5):055007. PubMed ID: 20844318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft.
    Han DK; Park K; Park KD; Ahn KD; Kim YH
    Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coating bioabsorption and chronic bare metal scaffolding versus fully bioabsorbable stent.
    Waksman R; Pakala R
    EuroIntervention; 2009 Dec; 5 Suppl F():F36-42. PubMed ID: 22100674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of pre-coating in artificial vessel endothelialization].
    Xiao L; Shi D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Apr; 19(4):270-3. PubMed ID: 15921316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelialization of cardiovascular devices.
    Jana S
    Acta Biomater; 2019 Nov; 99():53-71. PubMed ID: 31454565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coronary stents: a materials perspective.
    Mani G; Feldman MD; Patel D; Agrawal CM
    Biomaterials; 2007 Mar; 28(9):1689-710. PubMed ID: 17188349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrins-FAK-Rho GTPases pathway in endothelial cells sense and response to surface wettability of plasma nanocoatings.
    Shen Y; Ma Y; Gao M; Lai Y; Wang G; Yu Q; Cui FZ; Liu X
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5112-21. PubMed ID: 23676504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents.
    Wang JL; Li BC; Li ZJ; Ren KF; Jin LJ; Zhang SM; Chang H; Sun YX; Ji J
    Biomaterials; 2014 Sep; 35(27):7679-89. PubMed ID: 24929615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications.
    Pareta RA; Reising AB; Miller T; Storey D; Webster TJ
    Biotechnol Bioeng; 2009 Jun; 103(3):459-71. PubMed ID: 19241389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility screening in cardiovascular implants.
    Sigler M; Paul T; Grabitz RG
    Z Kardiol; 2005 Jun; 94(6):383-91. PubMed ID: 15940438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hemocompatibility evaluation in vitro of small-caliber expanded polytetrafluoroethylene vessel with silk fibroin coating sulfonated by low temperature plasma].
    Li SB; Yan YS; Li H; Chen KT; Tong J; Chen QQ; Zhang FW; Xiao F
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Sep; 30(9):2100-3. PubMed ID: 20855261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of biocompatibility on poly(vinylidene fluoride) and polysulfone by oxygen plasma treatment and dopamine coating.
    Mangindaan D; Yared I; Kurniawan H; Sheu JR; Wang MJ
    J Biomed Mater Res A; 2012 Nov; 100(11):3177-88. PubMed ID: 22941748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonthrombogenic approaches to cardiovascular bioengineering.
    Li S; Henry JJ
    Annu Rev Biomed Eng; 2011 Aug; 13():451-75. PubMed ID: 21639778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of metallic cardiovascular stents by strongly adhering aliphatic polyester coatings.
    Jérôme C; Aqil A; Voccia S; Labaye DE; Maquet V; Gautier S; Bertrand OF; Jérôme R
    J Biomed Mater Res A; 2006 Mar; 76(3):521-9. PubMed ID: 16317721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The immobilization of recombinant human tropoelastin on metals using a plasma-activated coating to improve the biocompatibility of coronary stents.
    Waterhouse A; Yin Y; Wise SG; Bax DV; McKenzie DR; Bilek MM; Weiss AS; Ng MK
    Biomaterials; 2010 Nov; 31(32):8332-40. PubMed ID: 20708259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.