These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 23249744)
1. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches. Baird NJ; Ferré-D'Amaré AR RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744 [TBL] [Abstract][Full Text] [Related]
3. The asymmetry and cooperativity of tandem glycine riboswitch aptamers. Torgerson CD; Hiller DA; Strobel SA RNA; 2020 May; 26(5):564-580. PubMed ID: 31992591 [TBL] [Abstract][Full Text] [Related]
4. Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. Lipfert J; Das R; Chu VB; Kudaravalli M; Boyd N; Herschlag D; Doniach S J Mol Biol; 2007 Feb; 365(5):1393-406. PubMed ID: 17118400 [TBL] [Abstract][Full Text] [Related]
5. Ion-dependent mobility effects of the Fusobacterium nucleatum glycine riboswitch aptamer II via site-directed spin-labeling (SDSL) electron paramagnetic resonance (EPR). Ehrenberger MA; Vieyra A; Esquiaqui JM; Fanucci GE Biochem Biophys Res Commun; 2019 Aug; 516(3):839-844. PubMed ID: 31262445 [TBL] [Abstract][Full Text] [Related]
6. Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch. Erion TV; Strobel SA RNA; 2011 Jan; 17(1):74-84. PubMed ID: 21098652 [TBL] [Abstract][Full Text] [Related]
7. Pseudoknot preorganization of the preQ1 class I riboswitch. Santner T; Rieder U; Kreutz C; Micura R J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200 [TBL] [Abstract][Full Text] [Related]
8. DNA-rescuable allosteric inhibition of aptamer II ligand affinity by aptamer I element in the shortened Vibrio cholerae glycine riboswitch. Sherman EM; Elsayed G; Esquiaqui JM; Elsayed M; Brinda B; Ye JD J Biochem; 2014 Dec; 156(6):323-31. PubMed ID: 25092436 [TBL] [Abstract][Full Text] [Related]
9. Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches. Kladwang W; Chou FC; Das R J Am Chem Soc; 2012 Jan; 134(3):1404-7. PubMed ID: 22192063 [TBL] [Abstract][Full Text] [Related]
10. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. Ruff KM; Strobel SA RNA; 2014 Nov; 20(11):1775-88. PubMed ID: 25246650 [TBL] [Abstract][Full Text] [Related]
11. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Mandal M; Lee M; Barrick JE; Weinberg Z; Emilsson GM; Ruzzo WL; Breaker RR Science; 2004 Oct; 306(5694):275-9. PubMed ID: 15472076 [TBL] [Abstract][Full Text] [Related]
13. Mutational analysis of the purine riboswitch aptamer domain. Gilbert SD; Love CE; Edwards AL; Batey RT Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911 [TBL] [Abstract][Full Text] [Related]
14. Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding. Lipfert J; Sim AY; Herschlag D; Doniach S RNA; 2010 Apr; 16(4):708-19. PubMed ID: 20194520 [TBL] [Abstract][Full Text] [Related]
15. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. Drogalis LK; Batey RT PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551 [TBL] [Abstract][Full Text] [Related]
16. Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. Vicens Q; Mondragón E; Batey RT Nucleic Acids Res; 2011 Oct; 39(19):8586-98. PubMed ID: 21745821 [TBL] [Abstract][Full Text] [Related]
17. Conformational Flexibility and Dynamics of the Internal Loop and Helical Regions of the Kink-Turn Motif in the Glycine Riboswitch by Site-Directed Spin-Labeling. Esquiaqui JM; Sherman EM; Ye JD; Fanucci GE Biochemistry; 2016 Aug; 55(31):4295-305. PubMed ID: 27427937 [TBL] [Abstract][Full Text] [Related]
18. Folding of a transcriptionally acting preQ1 riboswitch. Rieder U; Kreutz C; Micura R Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10804-9. PubMed ID: 20534493 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of cooperative ligand binding by the glycine riboswitch. Butler EB; Xiong Y; Wang J; Strobel SA Chem Biol; 2011 Mar; 18(3):293-8. PubMed ID: 21439473 [TBL] [Abstract][Full Text] [Related]
20. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]