These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23249748)

  • 41. Fidelity of base-pair recognition by a 3'-5' polymerase: mechanism of the
    Patel KJ; Yourik P; Jackman JE
    RNA; 2021 Jun; 27(6):683-693. PubMed ID: 33790044
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes.
    Guy MP; Phizicky EM
    RNA; 2015 Jan; 21(1):61-74. PubMed ID: 25404562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Required Elements in tRNA for Methylation by the Eukaryotic tRNA (Guanine-
    Nishida Y; Ohmori S; Kakizono R; Kawai K; Namba M; Okada K; Yamagami R; Hirata A; Hori H
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409407
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids.
    Wek SA; Zhu S; Wek RC
    Mol Cell Biol; 1995 Aug; 15(8):4497-506. PubMed ID: 7623840
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation.
    Chou HJ; Donnard E; Gustafsson HT; Garber M; Rando OJ
    Mol Cell; 2017 Dec; 68(5):978-992.e4. PubMed ID: 29198561
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.
    Arimbasseri AG; Blewett NH; Iben JR; Lamichhane TN; Cherkasova V; Hafner M; Maraia RJ
    PLoS Genet; 2015 Dec; 11(12):e1005671. PubMed ID: 26720005
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway.
    Turowski TW; Karkusiewicz I; Kowal J; Boguta M
    RNA; 2012 Oct; 18(10):1823-32. PubMed ID: 22919049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Saccharomyces cerevisiae Thg1 uses 5'-pyrophosphate removal to control addition of nucleotides to tRNA(His.).
    Smith BA; Jackman JE
    Biochemistry; 2014 Mar; 53(8):1380-91. PubMed ID: 24548272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Overexpression of mitochondrial histidyl-tRNA synthetase restores mitochondrial dysfunction caused by a deafness-associated tRNA
    Gong S; Wang X; Meng F; Cui L; Yi Q; Zhao Q; Cang X; Cai Z; Mo JQ; Liang Y; Guan MX
    J Biol Chem; 2020 Jan; 295(4):940-954. PubMed ID: 31819004
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 5-Methylcytidylic modification of in vitro transcript from the rat identifier sequence; evidence that the transcript forms a tRNA-like structure.
    Sakamoto K; Okada N
    Nucleic Acids Res; 1985 Oct; 13(20):7195-206. PubMed ID: 2414735
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three distinct 3-methylcytidine (m
    Xu L; Liu X; Sheng N; Oo KS; Liang J; Chionh YH; Xu J; Ye F; Gao YG; Dedon PC; Fu XY
    J Biol Chem; 2017 Sep; 292(35):14695-14703. PubMed ID: 28655767
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combination of the loss of cmnm5U34 with the lack of s2U34 modifications of tRNALys, tRNAGlu, and tRNAGln altered mitochondrial biogenesis and respiration.
    Wang X; Yan Q; Guan MX
    J Mol Biol; 2010 Feb; 395(5):1038-48. PubMed ID: 20004207
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding.
    Ozanick SG; Bujnicki JM; Sem DS; Anderson JT
    Nucleic Acids Res; 2007; 35(20):6808-19. PubMed ID: 17932071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutation in MTO1 involved in tRNA modification impairs mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae.
    Wang X; Yan Q; Guan MX
    Mitochondrion; 2009 Jun; 9(3):180-5. PubMed ID: 19460296
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Histidine tRNA guanylyltransferase from Saccharomyces cerevisiae. II. Catalytic mechanism.
    Jahn D; Pande S
    J Biol Chem; 1991 Dec; 266(34):22832-6. PubMed ID: 1660462
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Site specificities of three transfer RNA methyltransferases from yeast.
    Sindhuphak T; Hellman U; Svensson I
    Biochim Biophys Acta; 1985 Jan; 824(1):66-73. PubMed ID: 3881130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A semi-quantitative pull-down assay to study tRNA substrate specificity of modification enzymes.
    Han L; Marcus E; Phizicky EM
    Methods Enzymol; 2021; 658():359-377. PubMed ID: 34517954
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae.
    Anderson J; Phan L; Hinnebusch AG
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5173-8. PubMed ID: 10779558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA.
    Alexandrov A; Martzen MR; Phizicky EM
    RNA; 2002 Oct; 8(10):1253-66. PubMed ID: 12403464
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trm7p catalyses the formation of two 2'-O-methylriboses in yeast tRNA anticodon loop.
    Pintard L; Lecointe F; Bujnicki JM; Bonnerot C; Grosjean H; Lapeyre B
    EMBO J; 2002 Apr; 21(7):1811-20. PubMed ID: 11927565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.