BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23249892)

  • 1. The biomechanical effect of proximal tumor defect location on femur pathological fractures.
    Sivasundaram R; Shah S; Ahmadi S; Wunder JS; Schemitsch EH; Ferguson PC; Zdero R
    J Orthop Trauma; 2013 Aug; 27(8):e174-80. PubMed ID: 23249892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biomechanics of three different fracture fixation implants for distal femur repair in the presence of a tumor-like defect.
    Ahmadi S; Shah S; Wunder JS; Schemitsch EH; Ferguson PC; Zdero R
    Proc Inst Mech Eng H; 2013 Jan; 227(1):78-86. PubMed ID: 23516958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional properties of distal femoral cortical defects.
    Amanatullah DF; Williams JC; Fyhrie DP; Tamurian RM
    Orthopedics; 2014 Mar; 37(3):158-62. PubMed ID: 24762144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical evaluation of large-size fourth-generation composite femur and tibia models.
    Gardner MP; Chong AC; Pollock AG; Wooley PH
    Ann Biomed Eng; 2010 Mar; 38(3):613-20. PubMed ID: 20049637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biomechanical effect of notch size, notch location, and femur orientation on hip resurfacing failure.
    Morison Z; Olsen M; Higgins GA; Zdero R; Schemitsch EH
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2214-21. PubMed ID: 23481682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biomechanics of the T2 femoral nailing system: a comparison of synthetic femurs withfinite element analysis.
    Bougherara H; Zdero R; Miric M; Shah S; Hardisty M; Zalzal P; Schemitsch EH
    Proc Inst Mech Eng H; 2009 Apr; 223(3):303-14. PubMed ID: 19405436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Finite element analysis on fracture relevance as bone defect of proximal femur].
    Zhang S; Tu CQ; Duan H; Min L; Zhou Y; Zhang SL; Jiang Y; Feng P
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2011 Mar; 42(2):273-6, 279. PubMed ID: 21500571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Reduction in Torsional Strength by Concentric/Eccentric RIA Reaming Normal and Osteoporotic Long Bones (Femurs).
    Lowe JA; Crist BD; Pfeiffer F; Carson WL
    J Orthop Trauma; 2015 Oct; 29(10):e371-9. PubMed ID: 26402305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strength reduction and the effects of treatment of long bones with diaphyseal defects involving 50% of the cortex.
    Leggon RE; Lindsey RW; Panjabi MM
    J Orthop Res; 1988; 6(4):540-6. PubMed ID: 3379507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanical consequence of insufficient femoral component lateralization and exposed cancellous bone in hip resurfacing arthroplasty.
    Olsen M; Davis ET; Whyne CM; Zdero R; Schemitsch EH
    J Biomech Eng; 2010 Aug; 132(8):081011. PubMed ID: 20670060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of finite element analysis for prediction of the strength reduction due to metastatic lesions in the femoral neck.
    Cheal EJ; Hipp JA; Hayes WC
    J Biomech; 1993 Mar; 26(3):251-64. PubMed ID: 8468338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural properties of fourth-generation composite femurs and tibias.
    Heiner AD
    J Biomech; 2008 Nov; 41(15):3282-4. PubMed ID: 18829031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study between axial compression and lateral fall configuration tested in a rat proximal femur model.
    Zhang G; Qin L; Shi Y; Leung K
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):729-35. PubMed ID: 15963616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femoral head lag screw position for cephalomedullary nails: a biomechanical analysis.
    Kuzyk PR; Zdero R; Shah S; Olsen M; Waddell JP; Schemitsch EH
    J Orthop Trauma; 2012 Jul; 26(7):414-21. PubMed ID: 22337483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new intramedullary nailing device for the treatment of femoral shaft fractures: a biomechanical study.
    Wang G; Pan T; Peng X; Wang J
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):305-12. PubMed ID: 18079030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical measurements of axial crush injury to the distal condyles of human and synthetic femurs.
    Crookshank M; Coquim J; Olsen M; Schemitsch EH; Bougherara H; Zdero R
    Proc Inst Mech Eng H; 2012 Apr; 226(4):320-9. PubMed ID: 22611872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomechanical comparison of four different cementless press-fit stems used in revision surgery for total knee replacements.
    Zdero R; Saidi K; Mason SA; Schemitsch EH; Naudie DD
    Proc Inst Mech Eng H; 2012 Nov; 226(11):848-57. PubMed ID: 23185955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femoral bone strains during antegrade nailing: a comparison of two entry points with identical nails using finite element analysis.
    Tupis TM; Altman GT; Altman DT; Cook HA; Miller MC
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):354-9. PubMed ID: 22137147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical model of a high risk impending pathologic fracture of the femur: lesion creation based on clinically implemented scoring systems.
    Alexander GE; Gutierrez S; Nayak A; Palumbo BT; Cheong D; Letson GD; Santoni BG
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):408-14. PubMed ID: 23597777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.