BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 23250624)

  • 1. Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis.
    Hong S; Kim SA; Guerinot ML; McClung CR
    Plant Physiol; 2013 Feb; 161(2):893-903. PubMed ID: 23250624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FBH1 affects warm temperature responses in the Arabidopsis circadian clock.
    Nagel DH; Pruneda-Paz JL; Kay SA
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14595-600. PubMed ID: 25246594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basic helix-loop-helix transcription factor, bHLH11 functions in the iron-uptake system in Arabidopsis thaliana.
    Tanabe N; Noshi M; Mori D; Nozawa K; Tamoi M; Shigeoka S
    J Plant Res; 2019 Jan; 132(1):93-105. PubMed ID: 30417276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide.
    Meiser J; Lingam S; Bauer P
    Plant Physiol; 2011 Dec; 157(4):2154-66. PubMed ID: 21972265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of gene expression profiling revealed that COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis.
    Eroglu S; Aksoy E
    Biometals; 2017 Oct; 30(5):685-698. PubMed ID: 28744713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further insights into the role of bHLH121 in the regulation of iron homeostasis in
    Gao F; Robe K; Dubos C
    Plant Signal Behav; 2020 Oct; 15(10):1795582. PubMed ID: 32692954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3.
    Tissot N; Robe K; Gao F; Grant-Grant S; Boucherez J; Bellegarde F; Maghiaoui A; Marcelin R; Izquierdo E; Benhamed M; Martin A; Vignols F; Roschzttardtz H; Gaymard F; Briat JF; Dubos C
    New Phytol; 2019 Aug; 223(3):1433-1446. PubMed ID: 30773647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
    Colangelo EP; Guerinot ML
    Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis.
    Cai Y; Li Y; Liang G
    Plant Cell Environ; 2021 May; 44(5):1679-1691. PubMed ID: 33464620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis.
    Zhang J; Liu B; Li M; Feng D; Jin H; Wang P; Liu J; Xiong F; Wang J; Wang HB
    Plant Cell; 2015 Mar; 27(3):787-805. PubMed ID: 25794933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana.
    Mizuno T; Nomoto Y; Oka H; Kitayama M; Takeuchi A; Tsubouchi M; Yamashino T
    Plant Cell Physiol; 2014 May; 55(5):958-76. PubMed ID: 24500967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Transcription Factor bHLH121 Interacts with bHLH105 (ILR3) and Its Closest Homologs to Regulate Iron Homeostasis in Arabidopsis.
    Gao F; Robe K; Bettembourg M; Navarro N; Rofidal V; Santoni V; Gaymard F; Vignols F; Roschzttardtz H; Izquierdo E; Dubos C
    Plant Cell; 2020 Feb; 32(2):508-524. PubMed ID: 31776233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.
    Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G
    Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The central circadian clock proteins CCA1 and LHY regulate iron homeostasis in Arabidopsis.
    Xu G; Jiang Z; Wang H; Lin R
    J Integr Plant Biol; 2019 Feb; 61(2):168-181. PubMed ID: 29989313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function.
    Quintana J; Bernal M; Scholle M; Holländer-Czytko H; Nguyen NT; Piotrowski M; Mendoza-Cózatl DG; Haydon MJ; Krämer U
    Plant J; 2022 Feb; 109(4):992-1013. PubMed ID: 34839543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis.
    Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N
    Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The iron deficiency response in
    Kim SA; LaCroix IS; Gerber SA; Guerinot ML
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24933-24942. PubMed ID: 31776249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.