BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 23250779)

  • 1. Correlation of epigenetic change and identification of risk factors for oral submucous fibrosis.
    Xu C; Zhao J; Loo WT; Hao L; Wang M; Cheung MN; Dou Y; Yip AY; Ng EL; Chow LW; Liu Q
    Int J Biol Markers; 2012 Dec; 27(4):e314-21. PubMed ID: 23250779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Transcriptomic and Metabolomic Landscapes of Oral Submucous Fibrosis-Derived Oral Squamous Cell Carcinoma and its Tumor Microenvironment.
    Zhi Y; Wang Q; Zi M; Zhang S; Ge J; Liu K; Lu L; Fan C; Yan Q; Shi L; Chen P; Fan S; Liao Q; Guo C; Wang F; Gong Z; Xiong W; Zeng Z
    Adv Sci (Weinh); 2024 Mar; 11(12):e2306515. PubMed ID: 38229179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Change and pathological significance of glycogen content in oral squamous cell carcinoma and oral submucous fibrosis.
    Nie H; Hu X; Xiong H; Zeng L; Chen W; Su T
    Tissue Cell; 2024 Apr; 87():102337. PubMed ID: 38430849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA methyltransferase 3A induces the occurrence of oral submucous fibrosis by promoting the methylation of the von Hippel-Lindau.
    Kuang H; Yang L; Li Z; Wang J; Zheng K; Mei J; Sun H; Huang Y; Yang C; Luo W
    Oral Dis; 2024 May; 30(4):2325-2336. PubMed ID: 37743610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative molecular analysis of oral submucous fibrosis and other organ fibrosis based on weighted gene co-expression network analysis.
    Chen J; Liu B; Xie X; Li W
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Dec; 47(12):1663-1672. PubMed ID: 36748376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and environmental contributions for the relationship between tooth loss and oral potentially malignant disorders and oral squamous cell carcinoma.
    da Silva AM; Falcão MML; Freitas VS; Vieira AR
    Head Neck; 2024 Jun; 46(6):1417-1427. PubMed ID: 38288609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenesis and therapeutic intervention of oral submucous fibrosis.
    Yoithapprabhunath TR; Maheswaran T; Dineshshankar J; Anusushanth A; Sindhuja P; Sitra G
    J Pharm Bioallied Sci; 2013 Jun; 5(Suppl 1):S85-8. PubMed ID: 23946584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of Clinical and Histopathological Grades in Oral Submucous Fibrosis Patients with Oxidative Stress Markers in Saliva.
    Divyambika CV; Sathasivasubramanian S; Vani G; Vanishree AJ; Malathi N
    Indian J Clin Biochem; 2018 Jul; 33(3):348-355. PubMed ID: 30072836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salivary and serum levels of lactate dehydrogenase in oral submucous fibrosis: A meta-analysis.
    Chen X; Chen T; Xie H; Guo J
    Medicine (Baltimore); 2024 Apr; 103(15):e37788. PubMed ID: 38608075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-based identification of signature genes KLF6 and SPOCK1 associated with oral submucous fibrosis.
    Singh P; Rai A; Dohare R; Arora S; Ali S; Parveen S; Syed MA
    Mol Clin Oncol; 2020 Apr; 12(4):299-310. PubMed ID: 32190310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved epigenetic counter to track mitotic age in normal and precancerous tissues.
    Zhu T; Tong H; Du Z; Beck S; Teschendorff AE
    Nat Commun; 2024 May; 15(1):4211. PubMed ID: 38760334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylation-mediated molecular dysregulation in clinical oral malignancy.
    Towle R; Garnis C
    J Oncol; 2012; 2012():170172. PubMed ID: 22645611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of cytokines in gingival crevicular fluid and saliva of patients with aggressive periodontitis.
    Yue Y; Liu Q; Xu C; Loo WT; Wang M; Wen G; Cheung MN; Bai LJ; Dou YD; Chow LW; Hao L; Tian Y; Li JL; Yip AY; Ng EL
    Int J Biol Markers; 2013 Apr; 28(1):108-12. PubMed ID: 23592001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HLA-DQB1 Allele Polymorphism Associated with Oral Submucous Fibrosis in Hunan, China.
    Tan Y; Huang Y; Guo L; Zhou L; Zhu K; Li Y; Tan J
    J Immunol Res; 2024; 2024():8757860. PubMed ID: 38799118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Overview of DNA Methylation Indicators for the Course of Oral Precancer.
    Wang W; Li W; Zhang H
    Appl Bionics Biomech; 2022; 2022():6468773. PubMed ID: 36060560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis.
    Shrishrimal S; Kosmacek EA; Oberley-Deegan RE
    Oxid Med Cell Longev; 2019; 2019():4278658. PubMed ID: 30881591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk: A PRISMA-compliant meta-analysis.
    Wen G; Wang H; Zhong Z
    Medicine (Baltimore); 2018 Mar; 97(11):e9971. PubMed ID: 29538221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The association, clinicopathological significance, and diagnostic value of
    Shen Z; Zhou C; Li J; Deng H; Li Q; Wang J
    Onco Targets Ther; 2016; 9():6763-6773. PubMed ID: 27826202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA methylation markers for oral pre-cancer progression: A critical review.
    Shridhar K; Walia GK; Aggarwal A; Gulati S; Geetha AV; Prabhakaran D; Dhillon PK; Rajaraman P
    Oral Oncol; 2016 Feb; 53():1-9. PubMed ID: 26690652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter region hypermethylation and mRNA expression of MGMT and p16 genes in tissue and blood samples of human premalignant oral lesions and oral squamous cell carcinoma.
    Bhatia V; Goel MM; Makker A; Tewari S; Yadu A; Shilpi P; Kumar S; Agarwal SP; Goel SK
    Biomed Res Int; 2014; 2014():248419. PubMed ID: 24991542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.