These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23251647)

  • 1. Reduced motor cortex activity during movement preparation following a period of motor skill practice.
    Wright DJ; Holmes P; Di Russo F; Loporto M; Smith D
    PLoS One; 2012; 7(12):e51886. PubMed ID: 23251647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the movement-related cortical potential to study motor skill learning.
    Wright DJ; Holmes PS; Smith D
    J Mot Behav; 2011; 43(3):193-201. PubMed ID: 21462065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in cortical activity related to motor planning between experienced guitarists and non-musicians during guitar playing.
    Wright DJ; Holmes PS; Di Russo F; Loporto M; Smith D
    Hum Mov Sci; 2012 Jun; 31(3):567-77. PubMed ID: 21899906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor learning enhanced by combined motor imagery and noninvasive brain stimulation is associated with reduced short-interval intracortical inhibition.
    Meng HJ; Cao N; Lin YT; Liu K; Zhang J; Pi YL
    Brain Behav; 2019 Apr; 9(4):e01252. PubMed ID: 30884212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue in a simple repetitive motor task: a combined electrophysiological and neuropsychological study.
    Dirnberger G; Duregger C; Trettler E; Lindinger G; Lang W
    Brain Res; 2004 Nov; 1028(1):26-30. PubMed ID: 15518638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetrical facilitation of motor-evoked potentials following motor practice.
    Hammond GR; Vallence AM
    Neuroreport; 2006 May; 17(8):805-7. PubMed ID: 16708018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of attention alternation on movement-related cortical potentials in healthy individuals and stroke patients.
    Aliakbaryhosseinabadi S; Kostic V; Pavlovic A; Radovanovic S; Nlandu Kamavuako E; Jiang N; Petrini L; Dremstrup K; Farina D; Mrachacz-Kersting N
    Clin Neurophysiol; 2017 Jan; 128(1):165-175. PubMed ID: 27912170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor cortex excitability is not differentially modulated following skill and strength training.
    Leung M; Rantalainen T; Teo WP; Kidgell D
    Neuroscience; 2015 Oct; 305():99-108. PubMed ID: 26259901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences.
    Plow EB; Carey JR
    Brain Imaging Behav; 2012 Sep; 6(3):437-53. PubMed ID: 22454141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary motor cortex excitability is modulated with bimanual training.
    Neva JL; Legon W; Staines WR
    Neurosci Lett; 2012 Apr; 514(2):147-51. PubMed ID: 22405809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA; Lungholt BK; Nyborg K; Nielsen JB
    Exp Brain Res; 2004 Nov; 159(2):197-205. PubMed ID: 15549279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRCP as a biomarker of motor action with varying degree of central and peripheral contribution as defined by ultrasound imaging.
    Sosnowska A; Gollee H; Vučković A
    J Neurophysiol; 2021 Jul; 126(1):249-263. PubMed ID: 33978487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting-state cortical connectivity predicts motor skill acquisition.
    Wu J; Srinivasan R; Kaur A; Cramer SC
    Neuroimage; 2014 May; 91():84-90. PubMed ID: 24473097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome.
    Bologna M; Rocchi L; Paparella G; Nardella A; Li Voti P; Conte A; Kojovic M; Rothwell JC; Berardelli A
    Brain Stimul; 2015; 8(3):603-12. PubMed ID: 25697591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Habituation in a simple repetitive motor task: a study with movement-related cortical potentials.
    Dirnberger G; Duregger C; Lindinger G; Lang W
    Clin Neurophysiol; 2004 Feb; 115(2):378-84. PubMed ID: 14744580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disengagement of Motor Cortex during Long-Term Learning Tracks the Performance Level of Learned Movements.
    Hwang EJ; Dahlen JE; Mukundan M; Komiyama T
    J Neurosci; 2021 Aug; 41(33):7029-7047. PubMed ID: 34244359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials.
    Dirnberger G; Reumann M; Endl W; Lindinger G; Lang W; Rothwell JC
    Exp Brain Res; 2000 Nov; 135(2):231-40. PubMed ID: 11131508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttraining Alpha Transcranial Alternating Current Stimulation Impairs Motor Consolidation in Elderly People.
    Rumpf JJ; Barbu A; Fricke C; Wegscheider M; Classen J
    Neural Plast; 2019; 2019():2689790. PubMed ID: 31428143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goal-directed visuomotor skill learning: off-line enhancement and the importance of the primary motor cortex.
    Borich M; Furlong M; Holsman D; Kimberley TJ
    Restor Neurol Neurosci; 2011; 29(2):105-13. PubMed ID: 21701062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.