BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 23252728)

  • 1. Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath.
    Choi SJ; Lee I; Jang BH; Youn DY; Ryu WH; Park CO; Kim ID
    Anal Chem; 2013 Feb; 85(3):1792-6. PubMed ID: 23252728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases.
    Choi SJ; Fuchs F; Demadrille R; Grévin B; Jang BH; Lee SJ; Lee JH; Tuller HL; Kim ID
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9061-70. PubMed ID: 24844154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis.
    Righettoni M; Tricoli A; Pratsinis SE
    Anal Chem; 2010 May; 82(9):3581-7. PubMed ID: 20380475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-walled SnO₂ nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules.
    Jang JS; Kim SJ; Choi SJ; Kim NH; Hakim M; Rothschild A; Kim ID
    Nanoscale; 2015 Oct; 7(39):16417-26. PubMed ID: 26395290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO(2) nanofibers functionalized with reduced graphene oxide nanosheets.
    Choi SJ; Jang BH; Lee SJ; Min BK; Rothschild A; Kim ID
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2588-97. PubMed ID: 24456186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breath acetone monitoring by portable Si:WO3 gas sensors.
    Righettoni M; Tricoli A; Gass S; Schmid A; Amann A; Pratsinis SE
    Anal Chim Acta; 2012 Aug; 738():69-75. PubMed ID: 22790702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Potential of WO₃ Based Sensors for Breath Analysis.
    Staerz A; Weimar U; Barsan N
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely sensitive and selective NO probe based on villi-like WO3 nanostructures for application to exhaled breath analyzers.
    Moon HG; Choi YR; Shim YS; Choi KI; Lee JH; Kim JS; Yoon SJ; Park HH; Kang CY; Jang HW
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10591-6. PubMed ID: 24090094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au-modified three-dimensional In₂O₃ inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes.
    Xing R; Li Q; Xia L; Song J; Xu L; Zhang J; Xie Y; Song H
    Nanoscale; 2015 Aug; 7(30):13051-60. PubMed ID: 26172336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.
    Miyauchi M
    Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sub-ppm acetone gas sensor for diabetes detection using 10 nm thick ultrathin InN FETs.
    Kao KW; Hsu MC; Chang YH; Gwo S; Yeh JA
    Sensors (Basel); 2012; 12(6):7157-68. PubMed ID: 22969342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalyst-loaded porous WO3 nanofibers using catalyst-decorated polystyrene colloid templates for detection of biomarker molecules.
    Choi SJ; Kim SJ; Koo WT; Cho HJ; Kim ID
    Chem Commun (Camb); 2015 Feb; 51(13):2609-12. PubMed ID: 25572467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator.
    Kalidoss R; Umapathy S
    Biomed Microdevices; 2019 Dec; 22(1):2. PubMed ID: 31797133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath.
    Fan GT; Yang CL; Lin CH; Chen CC; Shih CH
    Talanta; 2014 Mar; 120():386-90. PubMed ID: 24468386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring.
    Rydosz A
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30012960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation.
    Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J
    J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive Body Fat Burn Monitoring from Exhaled Acetone with Si-doped WO
    Güntner AT; Sievi NA; Theodore SJ; Gulich T; Kohler M; Pratsinis SE
    Anal Chem; 2017 Oct; 89(19):10578-10584. PubMed ID: 28891296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoporous WO3 Nanofibers with Protein-Templated Nanoscale Catalysts for Detection of Trace Biomarkers in Exhaled Breath.
    Kim SJ; Choi SJ; Jang JS; Kim NH; Hakim M; Tuller HL; Kim ID
    ACS Nano; 2016 Jun; 10(6):5891-9. PubMed ID: 27166639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Gas Sensing Properties of In2O3/Au Nanorods for Detection of Volatile Organic Compounds in Exhaled Breath.
    Xing R; Xu L; Song J; Zhou C; Li Q; Liu D; Wei Song H
    Sci Rep; 2015 Jun; 5():10717. PubMed ID: 26030482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications.
    Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C
    Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.