These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 23252746)

  • 1. Antisense oligonucleotides: rising stars in eliminating RNA toxicity in myotonic dystrophy.
    Gao Z; Cooper TA
    Hum Gene Ther; 2013 May; 24(5):499-507. PubMed ID: 23252746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting nuclear RNA for in vivo correction of myotonic dystrophy.
    Wheeler TM; Leger AJ; Pandey SK; MacLeod AR; Nakamori M; Cheng SH; Wentworth BM; Bennett CF; Thornton CA
    Nature; 2012 Aug; 488(7409):111-5. PubMed ID: 22859208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of expanded (CTG)•(CAG) repeats by antisense oligonucleotides.
    Nakamori M; Gourdon G; Thornton CA
    Mol Ther; 2011 Dec; 19(12):2222-7. PubMed ID: 21971425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.
    Wojtkowiak-Szlachcic A; Taylor K; Stepniak-Konieczna E; Sznajder LJ; Mykowska A; Sroka J; Thornton CA; Sobczak K
    Nucleic Acids Res; 2015 Mar; 43(6):3318-31. PubMed ID: 25753670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Therapeutic development in myotonic dystrophy].
    Takahashi MP; Nakamori M; Mochizuki H
    Rinsho Shinkeigaku; 2014; 54(12):1077-9. PubMed ID: 25519965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3'UTR RNA.
    Yadava RS; Yu Q; Mandal M; Rigo F; Bennett CF; Mahadevan MS
    Hum Mol Genet; 2020 Jun; 29(9):1440-1453. PubMed ID: 32242217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Delivery of Ligand-Conjugated Antisense Oligonucleotides (C16-HA-ASO) Targeting Dystrophia Myotonica Protein Kinase Transcripts for the Treatment of Myotonic Dystrophy Type 1.
    Ait Benichou S; Jauvin D; De Serres-Bérard T; Bennett F; Rigo F; Gourdon G; Boutjdir M; Chahine M; Puymirat J
    Hum Gene Ther; 2022 Aug; 33(15-16):810-820. PubMed ID: 35794764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic Evaluation of Chimeric LNA/2'-O-Methyl Steric Blockers for Myotonic Dystrophy Type 1 Therapy.
    Christou M; Wengel J; Sokratous K; Kyriacou K; Nikolaou G; Phylactou LA; Mastroyiannopoulos NP
    Nucleic Acid Ther; 2020 Apr; 30(2):80-93. PubMed ID: 31873063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myotonic dystrophy: clinical and molecular parallels between myotonic dystrophy type 1 and type 2.
    Ranum LP; Day JW
    Curr Neurol Neurosci Rep; 2002 Sep; 2(5):465-70. PubMed ID: 12169228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1.
    De Serres-Bérard T; Ait Benichou S; Jauvin D; Boutjdir M; Puymirat J; Chahine M
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AON-induced splice-switching and DMPK pre-mRNA degradation as potential therapeutic approaches for Myotonic Dystrophy type 1.
    Stepniak-Konieczna E; Konieczny P; Cywoniuk P; Dluzewska J; Sobczak K
    Nucleic Acids Res; 2020 Mar; 48(5):2531-2543. PubMed ID: 31965181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic Approaches for Dominant Muscle Diseases: Highlight on Myotonic Dystrophy.
    Klein AF; Dastidar S; Furling D; Chuah MK
    Curr Gene Ther; 2015; 15(4):329-37. PubMed ID: 26122101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisense oligonucleotides as a potential treatment for brain deficits observed in myotonic dystrophy type 1.
    Ait Benichou S; Jauvin D; De Serres-Bérard T; Pierre M; Ling KK; Bennett CF; Rigo F; Gourdon G; Chahine M; Puymirat J
    Gene Ther; 2022 Dec; 29(12):698-709. PubMed ID: 35075265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy.
    Sznajder ŁJ; Swanson MS
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31323950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1.
    Lee JE; Bennett CF; Cooper TA
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4221-6. PubMed ID: 22371589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1.
    de Haro M; Al-Ramahi I; De Gouyon B; Ukani L; Rosa A; Faustino NA; Ashizawa T; Cooper TA; Botas J
    Hum Mol Genet; 2006 Jul; 15(13):2138-45. PubMed ID: 16723374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (CCUG)
    Yenigun VB; Sirito M; Amcheslavky A; Czernuszewicz T; Colonques-Bellmunt J; García-Alcover I; Wojciechowska M; Bolduc C; Chen Z; López Castel A; Krahe R; Bergmann A
    Dis Model Mech; 2017 Aug; 10(8):993-1003. PubMed ID: 28623239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of Toxic RNA in Myotonic Dystrophy Using Gapmer Antisense Oligonucleotides.
    Nguyen Q; Yokota T
    Methods Mol Biol; 2020; 2176():99-109. PubMed ID: 32865785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy.
    Sobczak K; Wheeler TM; Wang W; Thornton CA
    Mol Ther; 2013 Feb; 21(2):380-7. PubMed ID: 23183533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model.
    Angelbello AJ; Rzuczek SG; Mckee KK; Chen JL; Olafson H; Cameron MD; Moss WN; Wang ET; Disney MD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7799-7804. PubMed ID: 30926669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.