These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 23252846)

  • 1. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.
    Schwarz T; Nagel J; Wölbing R; Kemmler M; Kleiner R; Koelle D
    ACS Nano; 2013 Jan; 7(1):844-50. PubMed ID: 23252846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications.
    Granata C; Esposito E; Vettoliere A; Petti L; Russo M
    Nanotechnology; 2008 Jul; 19(27):275501. PubMed ID: 21828707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YBa
    Lin J; Müller B; Linek J; Karrer M; Wenzel M; Martínez-Pérez MJ; Kleiner R; Koelle D
    Nanoscale; 2020 Mar; 12(9):5658-5668. PubMed ID: 32101218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of high-T(c) YBa(2)Cu(3)O(7-x) nanoSQUIDs made by focused ion beam milling.
    Wu CH; Chou YT; Kuo WC; Chen JH; Wang LM; Chen JC; Chen KL; Sou UC; Yang HC; Jeng JT
    Nanotechnology; 2008 Aug; 19(31):315304. PubMed ID: 21828785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Performance Nb Nano-Superconducting Quantum Interference Device with a Three-Dimensional Structure.
    Chen L; Wang H; Liu X; Wu L; Wang Z
    Nano Lett; 2016 Dec; 16(12):7726-7730. PubMed ID: 27960520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.
    Zhu Z; Gao D; Dong C; Yang G; Zhang J; Zhang J; Shi Z; Gao H; Luo H; Xue D
    Phys Chem Chem Phys; 2012 Mar; 14(11):3859-63. PubMed ID: 22327377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NanoSQUIDs from YBa
    Lin J; Linek J; Kleiner R; Koelle D
    Nanoscale; 2020 Oct; 12(38):20016-20024. PubMed ID: 32996990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Axis Vector Nano Superconducting Quantum Interference Device.
    Martínez-Pérez MJ; Gella D; Müller B; Morosh V; Wölbing R; Sesé J; Kieler O; Kleiner R; Koelle D
    ACS Nano; 2016 Sep; 10(9):8308-15. PubMed ID: 27332709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The diamond superconducting quantum interference device.
    Mandal S; Bautze T; Williams OA; Naud C; Bustarret É; Omnès F; Rodière P; Meunier T; Bäuerle C; Saminadayar L
    ACS Nano; 2011 Sep; 5(9):7144-8. PubMed ID: 21800905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of High-Temperature Superconductivity on SQUID Magnetometers.
    Clarke J; Koch RH
    Science; 1988 Oct; 242(4876):217-23. PubMed ID: 17787650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.
    Takeda K; Mori H; Yamaguchi A; Ishimoto H; Nakamura T; Kuriki S; Hozumi T; Ohkoshi S
    Rev Sci Instrum; 2008 Mar; 79(3):033909. PubMed ID: 18377027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device.
    Zhao J; Zhang Y; Lee YH; Krause HJ
    Rev Sci Instrum; 2014 May; 85(5):054707. PubMed ID: 24880395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury-Based Cuprate High-Transition Temperature Grain-Boundary Junctions and SQUIDs Operating Above 110 Kelvin.
    Gupta A; Sun JZ; Tsuei CC
    Science; 1994 Aug; 265(5175):1075-7. PubMed ID: 17832899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2011 Jan; 82(1):015109. PubMed ID: 21280860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Usoskin A
    Rev Sci Instrum; 2007 May; 78(5):054701. PubMed ID: 17552846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube superconducting quantum interference device.
    Cleuziou JP; Wernsdorfer W; Bouchiat V; Ondarçuhu T; Monthioux M
    Nat Nanotechnol; 2006 Oct; 1(1):53-9. PubMed ID: 18654142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct-coupled micro-magnetometer with Y-Ba-Cu-O nano-slit SQUID fabricated with a focused helium ion beam.
    Cho EY; Li H; LeFebvre JC; Zhou YW; Dynes RC; Cybart SA
    Appl Phys Lett; 2018 Oct; 113(16):162602. PubMed ID: 30364078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate periodicity measurement of superconducting quantum interference device magnetic flux response.
    Nakanishi M
    Rev Sci Instrum; 2010 Sep; 81(9):094703. PubMed ID: 20886999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications.
    Vinante A; Mezzena R; Falferi P
    Rev Sci Instrum; 2014 Oct; 85(10):103909. PubMed ID: 25362418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.