These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23252853)

  • 1. Tool to estimate optical metrics from summary wave-front analysis data in the human eye.
    Jansonius NM
    Ophthalmic Physiol Opt; 2013 Jan; 33(1):35-41. PubMed ID: 23252853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical aberrations in the mouse eye.
    de la Cera EG; Rodríguez G; Llorente L; Schaeffel F; Marcos S
    Vision Res; 2006 Aug; 46(16):2546-53. PubMed ID: 16516259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spherical aberration and other higher-order aberrations in the human eye: from summary wave-front analysis data to optical variables relevant to visual perception.
    Jansonius NM
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):941-50. PubMed ID: 20448758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave aberration of human eyes and new descriptors of image optical quality and visual performance.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accounting for the phase, spatial frequency and orientation demands of the task improves metrics based on the visual Strehl ratio.
    Young LK; Love GD; Smithson HE
    Vision Res; 2013 Sep; 90():57-67. PubMed ID: 23876993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of wave front refraction on pupil size due to the presence of higher order aberrations.
    Iseli HP; Bueeler M; Hafezi F; Seiler T; Mrochen M
    Eur J Ophthalmol; 2005; 15(6):680-7. PubMed ID: 16329051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images.
    Legras R; Benard Y; Lopez-Gil N
    J Cataract Refract Surg; 2012 Mar; 38(3):458-69. PubMed ID: 22340606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the wave-front aberration of the eye by a fast psychophysical procedure.
    He JC; Marcos S; Webb RH; Burns SA
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2449-56. PubMed ID: 9729856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subjective depth of field in presence of 4th-order and 6th-order Zernike spherical aberration using adaptive optics technology.
    Benard Y; Lopez-Gil N; Legras R
    J Cataract Refract Surg; 2010 Dec; 36(12):2129-38. PubMed ID: 21111317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The change of spherical aberration during accommodation and its effect on the accommodation response.
    López-Gil N; Fernández-Sánchez V
    J Vis; 2010 Nov; 10(13):12. PubMed ID: 21075837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Off-axis wave front measurements for optical correction in eccentric viewing.
    Lundström L; Unsbo P; Gustafsson J
    J Biomed Opt; 2005; 10(3):034002. PubMed ID: 16229646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of spherical aberration on visual acuity at different contrasts.
    Li J; Xiong Y; Wang N; Li S; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y
    J Cataract Refract Surg; 2009 Aug; 35(8):1389-95. PubMed ID: 19631126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical eye model for normal eyes.
    Rozema JJ; Atchison DA; Tassignon MJ
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4525-33. PubMed ID: 21436280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinoscopic reflexes: theoretical basis and effects of monochromatic aberrations.
    Roorda A; Bobier WR
    J Am Optom Assoc; 1996 Oct; 67(10):610-8. PubMed ID: 8942134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing the dynamic wavefront aberrations in the human eye.
    Iskander DR; Collins MJ; Morelande MR; Zhu M
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1969-80. PubMed ID: 15536899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational aspects of the visual Strehl ratio.
    Iskander DR
    Optom Vis Sci; 2006 Jan; 83(1):57-9. PubMed ID: 16432474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor.
    Salmon TO; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2457-65. PubMed ID: 9729857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraoperative optical refractive biometry for intraocular lens power estimation without axial length and keratometry measurements.
    Ianchulev T; Salz J; Hoffer K; Albini T; Hsu H; Labree L
    J Cataract Refract Surg; 2005 Aug; 31(8):1530-6. PubMed ID: 16129287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast scanning peripheral wave-front sensor for the human eye.
    Jaeken B; Lundström L; Artal P
    Opt Express; 2011 Apr; 19(8):7903-13. PubMed ID: 21503102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of higher-order aberrations in a large clinical population.
    Hartwig A; Atchison DA
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7862-70. PubMed ID: 23033387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.