These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 23252889)
1. Mechanistic study of the covalent loading of paclitaxel via disulfide linkers for controlled drug release. Yuan L; Chen W; Hu J; Zhang JZ; Yang D Langmuir; 2013 Jan; 29(2):734-43. PubMed ID: 23252889 [TBL] [Abstract][Full Text] [Related]
2. Polymerizable disulfide paclitaxel prodrug for controlled drug delivery. Ding Y; Chen W; Hu J; Du M; Yang D Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():386-90. PubMed ID: 25280719 [TBL] [Abstract][Full Text] [Related]
3. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. Lv S; Tang Z; Zhang D; Song W; Li M; Lin J; Liu H; Chen X J Control Release; 2014 Nov; 194():220-7. PubMed ID: 25220162 [TBL] [Abstract][Full Text] [Related]
4. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Song N; Liu W; Tu Q; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Oct; 87(2):454-63. PubMed ID: 21719259 [TBL] [Abstract][Full Text] [Related]
5. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Gu Y; Zhong Y; Meng F; Cheng R; Deng C; Zhong Z Biomacromolecules; 2013 Aug; 14(8):2772-80. PubMed ID: 23777504 [TBL] [Abstract][Full Text] [Related]
6. Well-Defined Redox-Sensitive Polyethene Glycol-Paclitaxel Prodrug Conjugate for Tumor-Specific Delivery of Paclitaxel Using Octreotide for Tumor Targeting. Yin T; Wu Q; Wang L; Yin L; Zhou J; Huo M Mol Pharm; 2015 Aug; 12(8):3020-31. PubMed ID: 26086430 [TBL] [Abstract][Full Text] [Related]
7. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy. Han J; Michel AR; Lee HS; Kalscheuer S; Wohl A; Hoye TR; McCormick AV; Panyam J; Macosko CW Mol Pharm; 2015 Dec; 12(12):4329-35. PubMed ID: 26505116 [TBL] [Abstract][Full Text] [Related]
8. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Yin S; Huai J; Chen X; Yang Y; Zhang X; Gan Y; Wang G; Gu X; Li J Acta Biomater; 2015 Oct; 26():274-85. PubMed ID: 26300335 [TBL] [Abstract][Full Text] [Related]
9. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Li J; Huo M; Wang J; Zhou J; Mohammad JM; Zhang Y; Zhu Q; Waddad AY; Zhang Q Biomaterials; 2012 Mar; 33(7):2310-20. PubMed ID: 22166223 [TBL] [Abstract][Full Text] [Related]
10. Preparation of copolymer paclitaxel covalently linked via a disulfide bond and its application on controlled drug delivery. Chen W; Shi Y; Feng H; Du M; Zhang JZ; Hu J; Yang D J Phys Chem B; 2012 Aug; 116(30):9231-7. PubMed ID: 22774761 [TBL] [Abstract][Full Text] [Related]
11. Construction of polymer-paclitaxel conjugate linked via a disulfide bond. Yan Q; Yang Y; Chen W; Hu J; Yang D Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():580-5. PubMed ID: 26478347 [TBL] [Abstract][Full Text] [Related]
12. Zein-Paclitaxel Prodrug Nanoparticles for Redox-Triggered Drug Delivery and Enhanced Therapeutic Efficiency. Hou H; Zhang D; Lin J; Zhang Y; Li C; Wang Z; Ren J; Yao M; Wong KH; Wang Y J Agric Food Chem; 2018 Nov; 66(44):11812-11822. PubMed ID: 30339011 [TBL] [Abstract][Full Text] [Related]
13. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel. Li J; Yin T; Wang L; Yin L; Zhou J; Huo M Int J Pharm; 2015 Apr; 483(1-2):38-48. PubMed ID: 25655715 [TBL] [Abstract][Full Text] [Related]
14. Preparation of a camptothecin prodrug with glutathione-responsive disulfide linker for anticancer drug delivery. Xu Z; Wang D; Xu S; Liu X; Zhang X; Zhang H Chem Asian J; 2014 Jan; 9(1):199-205. PubMed ID: 24136878 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo characterization of a novel biocompatible polymer-lipid implant system for the sustained delivery of paclitaxel. Ho EA; Vassileva V; Allen C; Piquette-Miller M J Control Release; 2005 May; 104(1):181-91. PubMed ID: 15866344 [TBL] [Abstract][Full Text] [Related]
16. Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer. Tian X; Bera H; Guo X; Xu R; Sun J; He Z; Cun D; Yang M ACS Appl Mater Interfaces; 2021 Dec; 13(48):56858-56872. PubMed ID: 34806372 [TBL] [Abstract][Full Text] [Related]
17. Tumor-targeted paclitaxel delivery and enhanced penetration using TAT-decorated liposomes comprising redox-responsive poly(ethylene glycol). Fu H; Shi K; Hu G; Yang Y; Kuang Q; Lu L; Zhang L; Chen W; Dong M; Chen Y; He Q J Pharm Sci; 2015 Mar; 104(3):1160-73. PubMed ID: 25449709 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional pluronic/poly(ethylenimine) nanoparticles for anticancer drug. Li N; Yang X; Zhai G; Li L J Colloid Interface Sci; 2010 Oct; 350(1):117-25. PubMed ID: 20598703 [TBL] [Abstract][Full Text] [Related]
19. Development and in vitro characterization of paclitaxel and docetaxel loaded into hydrophobically derivatized hyperbranched polyglycerols. Mugabe C; Liggins RT; Guan D; Manisali I; Chafeeva I; Brooks DE; Heller M; Jackson JK; Burt HM Int J Pharm; 2011 Feb; 404(1-2):238-49. PubMed ID: 21093563 [TBL] [Abstract][Full Text] [Related]
20. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Smitha KT; Anitha A; Furuike T; Tamura H; Nair SV; Jayakumar R Colloids Surf B Biointerfaces; 2013 Apr; 104():245-53. PubMed ID: 23337120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]