These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23252907)

  • 21. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.
    Ulusoy C; Çavuş F; Yılmaz V; Tüzün E
    Immunol Invest; 2017 Jul; 46(5):490-499. PubMed ID: 28375749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting therapy to the neuromuscular junction: proof of concept.
    Kusner LL; Satija N; Cheng G; Kaminski HJ
    Muscle Nerve; 2014 May; 49(5):749-56. PubMed ID: 24037951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CD59 Expression in Skeletal Muscles and Its Role in Myasthenia Gravis.
    Iwasa K; Furukawa Y; Yoshikawa H; Yamada M; Ono K
    Neurol Neuroimmunol Neuroinflamm; 2023 Jan; 10(1):. PubMed ID: 36396448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Targeted Complement Inhibitor CRIg/FH Protects Against Experimental Autoimmune Myasthenia Gravis in Rats
    Song J; Zhao R; Yan C; Luo S; Xi J; Ding P; Li L; Hu W; Zhao C
    Front Immunol; 2022; 13():746068. PubMed ID: 35154091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies.
    Lindstrom JM; Engel AG; Seybold ME; Lennon VA; Lambert EH
    J Exp Med; 1976 Sep; 144(3):739-53. PubMed ID: 182897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ablation of IL-17 expression moderates experimental autoimmune myasthenia gravis disease severity.
    Aguilo-Seara G; Xie Y; Sheehan J; Kusner LL; Kaminski HJ
    Cytokine; 2017 Aug; 96():279-285. PubMed ID: 28599246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis.
    Mori S; Kubo S; Akiyoshi T; Yamada S; Miyazaki T; Hotta H; Desaki J; Kishi M; Konishi T; Nishino Y; Miyazawa A; Maruyama N; Shigemoto K
    Am J Pathol; 2012 Feb; 180(2):798-810. PubMed ID: 22142810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats.
    Chamberlain-Banoub J; Neal JW; Mizuno M; Harris CL; Morgan BP
    Clin Exp Immunol; 2006 Nov; 146(2):278-86. PubMed ID: 17034580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prevention of experimental autoimmune myasthenia gravis by rat Crry-Ig: A model agent for long-term complement inhibition in vivo.
    Hepburn NJ; Chamberlain-Banoub JL; Williams AS; Morgan BP; Harris CL
    Mol Immunol; 2008 Jan; 45(2):395-405. PubMed ID: 17651804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetylcholine receptor antibody-mediated animal models of myasthenia gravis and the role of complement.
    Kusner LL; Sengupta M; Kaminski HJ
    Ann N Y Acad Sci; 2018 Feb; 1413(1):136-142. PubMed ID: 29356015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. C5a is not involved in experimental autoimmune myasthenia gravis pathogenesis.
    Qi H; Tüzün E; Allman W; Saini SS; Penabad ZR; Pierangeli S; Christadoss P
    J Neuroimmunol; 2008 May; 196(1-2):101-6. PubMed ID: 18455242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The complement regulatory protein CD59: insights into attenuation of choroidal neovascularization.
    Schnabolk G; Tomlinson S; Rohrer B
    Adv Exp Med Biol; 2014; 801():435-40. PubMed ID: 24664728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Introducing Autoimmunity at the Synapse by a Novel Animal Model of Experimental Autoimmune Myasthenia Gravis.
    Wang J; Xiao Y; Zhang K; Luo B; Shen C
    Neuroscience; 2018 Mar; 374():264-270. PubMed ID: 29421431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitory IgG receptor FcgammaRIIB fails to inhibit experimental autoimmune myasthenia gravis pathogenesis.
    Li J; Tüzün E; Wu XR; Qi HB; Allman W; Saini SS; Christadoss P
    J Neuroimmunol; 2008 Feb; 194(1-2):44-53. PubMed ID: 18207575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serum-resistant strains of Borrelia burgdorferi evade complement-mediated killing by expressing a CD59-like complement inhibitory molecule.
    Pausa M; Pellis V; Cinco M; Giulianini PG; Presani G; Perticarari S; Murgia R; Tedesco F
    J Immunol; 2003 Mar; 170(6):3214-22. PubMed ID: 12626580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complement C2 siRNA mediated therapy of myasthenia gravis in mice.
    Huda R; Tüzün E; Christadoss P
    J Autoimmun; 2013 May; 42():94-104. PubMed ID: 23410585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunoregulation in experimental autoimmune myasthenia gravis--about T cells, antibodies, and endplates.
    De Baets M; Stassen M; Losen M; Zhang X; Machiels B
    Ann N Y Acad Sci; 2003 Sep; 998():308-17. PubMed ID: 14592888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decreased expression of miR-29 family associated with autoimmune myasthenia gravis.
    Cron MA; Payet CA; Fayet OM; Maillard S; Truffault F; Fadel E; Guihaire J; Berrih-Aknin S; Liston A; Le Panse R
    J Neuroinflammation; 2020 Oct; 17(1):294. PubMed ID: 33032631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of human and rat CD59 to the terminal complement complexes.
    Lehto T; Morgan BP; Meri S
    Immunology; 1997 Jan; 90(1):121-8. PubMed ID: 9038722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CD59 protects rat kidney from complement mediated injury in collaboration with crry.
    Watanabe M; Morita Y; Mizuno M; Nishikawa K; Yuzawa Y; Hotta N; Morgan BP; Okada N; Okada H; Matsuo S
    Kidney Int; 2000 Oct; 58(4):1569-79. PubMed ID: 11012891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.