BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23252934)

  • 1. Chemically enhancing block copolymers for block-selective synthesis of self-assembled metal oxide nanostructures.
    Kamcev J; Germack DS; Nykypanchuk D; Grubbs RB; Nam CY; Black CT
    ACS Nano; 2013 Jan; 7(1):339-46. PubMed ID: 23252934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemically directed assembly of photoactive metal oxide nanoparticle heterojunctions via the copper-catalyzed azide-alkyne cycloaddition "click" reaction.
    Cardiel AC; Benson MC; Bishop LM; Louis KM; Yeager JC; Tan Y; Hamers RJ
    ACS Nano; 2012 Jan; 6(1):310-8. PubMed ID: 22196212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors.
    Voet VS; Tichelaar M; Tanase S; Mittelmeijer-Hazeleger MC; ten Brinke G; Loos K
    Nanoscale; 2013 Jan; 5(1):184-92. PubMed ID: 23138962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective atomic layer deposition of metal oxide thin films on patterned self-assembled monolayers formed by microcontact printing.
    Lee BH; Sung MM
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3758-64. PubMed ID: 18047053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured magnetic thin films from organometallic block copolymers: pyrolysis of self-assembled polystyrene-block-poly(ferrocenylethylmethylsilane).
    Rider DA; Liu K; Eloi JC; Vanderark L; Yang L; Wang JY; Grozea D; Lu ZH; Russell TP; Manners I
    ACS Nano; 2008 Feb; 2(2):263-70. PubMed ID: 19206626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures.
    Liu HJ; Chen LY; He Q; Liang CW; Chen YZ; Chien YS; Hsieh YH; Lin SJ; Arenholz E; Luo CW; Chueh YL; Chen YC; Chu YH
    ACS Nano; 2012 Aug; 6(8):6952-9. PubMed ID: 22746982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled pit arrays as templates for the integration of Au nanocrystals in oxide surfaces.
    Konstantinović Z; Sandiumenge F; Santiso J; Balcells L; Martínez B
    Nanoscale; 2013 Feb; 5(3):1001-8. PubMed ID: 23250118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Placement control of nanomaterial arrays on the surface-reconstructed block copolymer thin films.
    Son JG; Bae WK; Kang H; Nealey PF; Char K
    ACS Nano; 2009 Dec; 3(12):3927-34. PubMed ID: 19916550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically structured metal oxide/silica nanofibers by colloid electrospinning.
    Horzum N; Muñoz-Espí R; Glasser G; Demir MM; Landfester K; Crespy D
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6338-45. PubMed ID: 23092359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires.
    Chai J; Buriak JM
    ACS Nano; 2008 Mar; 2(3):489-501. PubMed ID: 19206575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties.
    Wang P; Zhai Y; Wang D; Dong S
    Nanoscale; 2011 Apr; 3(4):1640-5. PubMed ID: 21286599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides.
    Das R; Pachfule P; Banerjee R; Poddar P
    Nanoscale; 2012 Jan; 4(2):591-9. PubMed ID: 22143166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple route to highly oriented and ordered nanoporous block copolymer templates.
    Park S; Wang JY; Kim B; Xu J; Russell TP
    ACS Nano; 2008 Apr; 2(4):766-72. PubMed ID: 19206609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles.
    Wu T; Gao J; Xu X; Wang W; Gao C; Qiu H
    Nanotechnology; 2013 May; 24(21):215604. PubMed ID: 23619742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Misorientation control and functionality design of nanopillars in self-assembled perovskite-spinel heteroepitaxial nanostructures.
    Liao SC; Tsai PY; Liang CW; Liu HJ; Yang JC; Lin SJ; Lai CH; Chu YH
    ACS Nano; 2011 May; 5(5):4118-22. PubMed ID: 21466204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Block-copolymer-based plasmonic nanostructures.
    Mistark PA; Park S; Yalcin SE; Lee DH; Yavuzcetin O; Tuominen MT; Russell TP; Achermann M
    ACS Nano; 2009 Dec; 3(12):3987-92. PubMed ID: 19947582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled arrangement of nanoparticle arrays in block-copolymer domains.
    Haryono A; Binder WH
    Small; 2006 May; 2(5):600-11. PubMed ID: 17193094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers.
    Päivänranta B; Sahoo PK; Tocce E; Auzelyte V; Ekinci Y; Solak HH; Liu CC; Stuen KO; Nealey PF; David C
    ACS Nano; 2011 Mar; 5(3):1860-4. PubMed ID: 21323325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of self-assembly of lithographically patternable block copolymer films.
    Bosworth JK; Paik MY; Ruiz R; Schwartz EL; Huang JQ; Ko AW; Smilgies DM; Black CT; Ober CK
    ACS Nano; 2008 Jul; 2(7):1396-402. PubMed ID: 19206307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods.
    He FA; Fan JT; Song F; Zhang LM; Lai-Wa Chan H
    Nanoscale; 2011 Mar; 3(3):1182-8. PubMed ID: 21258693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.