These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23253079)

  • 1. Controlled spontaneous emission of single molecules in a two-dimensional photonic band gap.
    Kaji T; Yamada T; Ito S; Miyasaka H; Ueda R; Inoue S; Otomo A
    J Am Chem Soc; 2013 Jan; 135(1):106-9. PubMed ID: 23253079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic band gap effects on spontaneous emission lifetimes of an assembly of atoms in two-dimensional photonic crystals.
    Zhou YS; Wang XH; Gu BY; Wang FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):017601. PubMed ID: 16090152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
    Chutinan A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026605. PubMed ID: 15783439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral control of near-field thermal radiation via photonic band engineering of two-dimensional photonic crystal slabs.
    Inoue T; Asano T; Noda S
    Opt Express; 2018 Nov; 26(24):32074-32082. PubMed ID: 30650786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spectral properties of two-dimensional photonic crystal quantum well structures].
    Wang DD; Wang YS; Xu Z; Deng LE; Zhang CX; Han X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):988-90. PubMed ID: 18720784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnification of photonic crystal fluorescence enhancement via TM resonance excitation and TE resonance extraction on a dielectric nanorod surface.
    Wu HY; Zhang W; Mathias PC; Cunningham BT
    Nanotechnology; 2010 Mar; 21(12):125203. PubMed ID: 20195016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Q hybrid 3D-2D slab-3D photonic crystal microcavity.
    Tang L; Yoshie T
    Opt Lett; 2010 Sep; 35(18):3144-6. PubMed ID: 20847806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of large band gap with anisotropic annular photonic crystal slab structure.
    Shi P; Huang K; Kang XL; Li YP
    Opt Express; 2010 Mar; 18(5):5221-8. PubMed ID: 20389535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization multiplexed fluorescence enhancer using a pixelated one-dimensional photonic band gap structure.
    Gao J; Sarangan AM; Zhan Q
    Opt Lett; 2012 Jul; 37(13):2640-2. PubMed ID: 22743480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast.
    Man W; Florescu M; Matsuyama K; Yadak P; Nahal G; Hashemizad S; Williamson E; Steinhardt P; Torquato S; Chaikin P
    Opt Express; 2013 Aug; 21(17):19972-81. PubMed ID: 24105543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foam as a self-assembling amorphous photonic band gap material.
    Ricouvier J; Tabeling P; Yazhgur P
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9202-9207. PubMed ID: 31019086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic crystal vertical-cavity surface-emitting lasers with true photonic bandgap.
    Panajotov K; Dems M
    Opt Lett; 2010 Mar; 35(6):829-31. PubMed ID: 20237613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic band gap structure for a ferroelectric photonic crystal at microwave frequencies.
    King TC; Chen DX; Lin WC; Wu CJ
    Appl Opt; 2015 Oct; 54(29):8738-41. PubMed ID: 26479812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional control of light in a two-dimensional photonic crystal slab.
    Chow E; Lin SY; Johnson SG; Villeneuve PR; Joannopoulos JD; Wendt JR; Vawter GA; Zubrzycki W; Hou H; Alleman A
    Nature; 2000 Oct; 407(6807):983-6. PubMed ID: 11069173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous emission in one-dimensional photonic crystals.
    Sánchez AS; Halevi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056609. PubMed ID: 16383773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals.
    Fujita M; Takahashi S; Tanaka Y; Asano T; Noda S
    Science; 2005 May; 308(5726):1296-8. PubMed ID: 15919989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffractionless flow of light in all-optical microchips.
    Chutinan A; John S; Toader O
    Phys Rev Lett; 2003 Mar; 90(12):123901. PubMed ID: 12688870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers.
    Shemuly D; Stolyarov AM; Ruff ZM; Wei L; Fink Y; Shapira O
    Opt Express; 2012 Mar; 20(6):6029-35. PubMed ID: 22418480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge.
    Petti L; Rippa M; Zhou J; Manna L; Mormile P
    Nanotechnology; 2011 Jul; 22(28):285307. PubMed ID: 21646692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of photonic band structure in a one-dimensional photonic crystal containing single-negative materials.
    Yeh DW; Wu CJ
    Opt Express; 2009 Sep; 17(19):16666-80. PubMed ID: 19770882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.