These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 23253619)

  • 1. Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: nitrogen-enhanced nanostructural evolution and its effect on phase stability.
    Yamanaka K; Mori M; Chiba A
    Acta Biomater; 2013 Apr; 9(4):6259-67. PubMed ID: 23253619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nitrogen addition on microstructure and mechanical behavior of biomedical Co-Cr-Mo alloys.
    Yamanaka K; Mori M; Chiba A
    J Mech Behav Biomed Mater; 2014 Jan; 29():417-26. PubMed ID: 24189323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.
    Yamanaka K; Mori M; Koizumi Y; Chiba A
    J Mech Behav Biomed Mater; 2014 Apr; 32():52-61. PubMed ID: 24412717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold-rolling behavior of biomedical Ni-free Co-Cr-Mo alloys: Role of strain-induced ε martensite and its intersecting phenomena.
    Mori M; Yamanaka K; Chiba A
    J Mech Behav Biomed Mater; 2015 Mar; 55():201-214. PubMed ID: 26594780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chromium and nitrogen content on the microstructures and mechanical properties of as-cast Co-Cr-Mo alloys for dental applications.
    Yoda K; Suyalatu ; Takaichi A; Nomura N; Tsutsumi Y; Doi H; Kurosu S; Chiba A; Igarashi Y; Hanawa T
    Acta Biomater; 2012 Jul; 8(7):2856-62. PubMed ID: 22430232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co-Cr-Mo alloys by introducing parent phase lattice defects.
    Mori M; Yamanaka K; Sato S; Tsubaki S; Satoh K; Kumagai M; Imafuku M; Shobu T; Chiba A
    J Mech Behav Biomed Mater; 2019 Feb; 90():523-529. PubMed ID: 30458336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of athermal epsilon-martensite in atomized Co-Cr-Mo-C implant alloy powders.
    Song CB; Park HB; Seong HG; López HF
    Acta Biomater; 2006 Nov; 2(6):685-91. PubMed ID: 16843077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nitrogen on the microstructure and mechanical properties of Co-33Cr-9W alloys prepared by dental casting.
    Yamanaka K; Mori M; Torita Y; Chiba A
    J Mech Behav Biomed Mater; 2018 Jan; 77():693-700. PubMed ID: 29102894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of carbon on the microstructure, mechanical properties and metal ion release of Ni-free Co-Cr-Mo alloys containing nitrogen.
    Mori M; Yamanaka K; Kuramoto K; Ohmura K; Ashino T; Chiba A
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():145-54. PubMed ID: 26117749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Texture evolution and mechanical anisotropy of biomedical hot-rolled Co-Cr-Mo alloy.
    Mori M; Yamanaka K; Sato S; Chiba A
    J Mech Behav Biomed Mater; 2015 Nov; 51():205-14. PubMed ID: 26275483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacturing of high-strength Ni-free Co-Cr-Mo alloy rods via cold swaging.
    Yamanaka K; Mori M; Yoshida K; Kuramoto K; Chiba A
    J Mech Behav Biomed Mater; 2016 Jul; 60():38-47. PubMed ID: 26773647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The significance of thermomechanical processing on the cellular response of biomedical Co-Cr-Mo alloys.
    Mori M; Guo T; Yamanaka K; Wang Z; Yoshida K; Onuki Y; Sato S; Chiba A; Misra RDK
    J Mech Behav Biomed Mater; 2022 Sep; 133():105360. PubMed ID: 35839635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nanostructure and hydrogenation reaction of Mg50Co50 BCC alloy prepared by ball-milling.
    Matsuda J; Shao H; Nakamura Y; Akiba E
    Nanotechnology; 2009 May; 20(20):204015. PubMed ID: 19420663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy.
    Petrov YN; Prokopenko GI; Mordyuk BN; Vasylyev MA; Voloshko SM; Skorodzievski VS; Filatova VS
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1024-35. PubMed ID: 26478400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au.
    Wang C; Peng S; Chan R; Sun S
    Small; 2009 Mar; 5(5):567-70. PubMed ID: 19189329
    [No Abstract]   [Full Text] [Related]  

  • 16. Striped alloy nanowire optical reflectance barcodes prepared from a single plating solution.
    Bulbarello A; Sattayasamitsathit S; Crevillen AG; Burdick J; Mannino S; Kanatharana P; Thavarungkul P; Escarpa A; Wang J
    Small; 2008 May; 4(5):597-600. PubMed ID: 18398924
    [No Abstract]   [Full Text] [Related]  

  • 17. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets.
    Jin Z; Yao J; Kittrell C; Tour JM
    ACS Nano; 2011 May; 5(5):4112-7. PubMed ID: 21476571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflow and electrical characteristics of nanoscale solder.
    Gu Z; Ye H; Smirnova D; Small D; Gracias DH
    Small; 2006 Feb; 2(2):225-9. PubMed ID: 17193025
    [No Abstract]   [Full Text] [Related]  

  • 19. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precipitation phase transformation in nanocrystalline Fe-Mo alloys.
    Sarkar S; Bansal C
    J Nanosci Nanotechnol; 2004; 4(1-2):203-8. PubMed ID: 15112568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.