These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 23254296)

  • 1. Brainstem respiratory networks: building blocks and microcircuits.
    Smith JC; Abdala AP; Borgmann A; Rybak IA; Paton JF
    Trends Neurosci; 2013 Mar; 36(3):152-62. PubMed ID: 23254296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brainstem respiratory chemosensitivity: new insights and clinical implications.
    Benarroch EE
    Neurology; 2007 Jun; 68(24):2140-3. PubMed ID: 17562836
    [No Abstract]   [Full Text] [Related]  

  • 3. Respiratory rhythms generated in the lamprey rhombencephalon.
    Martel B; Guimond JC; Gariépy JF; Gravel J; Auclair F; Kolta A; Lund JP; Dubuc R
    Neuroscience; 2007 Aug; 148(1):279-93. PubMed ID: 17618060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mini Review: Central Organization of Airway Afferent Nerve Circuits.
    Behrens R; McGovern AE; Farrell MJ; Moe AAK; Mazzone SB
    Neurosci Lett; 2021 Jan; 744():135604. PubMed ID: 33387662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms.
    Smith JC; Abdala AP; Koizumi H; Rybak IA; Paton JF
    J Neurophysiol; 2007 Dec; 98(6):3370-87. PubMed ID: 17913982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory rhythm and pattern generation: Brainstem cellular and circuit mechanisms.
    Smith JC
    Handb Clin Neurol; 2022; 188():1-35. PubMed ID: 35965022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation.
    Abdala AP; Rybak IA; Smith JC; Paton JF
    J Physiol; 2009 Jul; 587(Pt 14):3539-59. PubMed ID: 19491247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural regulation of respiration.
    Mitchell RA; Berger AJ
    Am Rev Respir Dis; 1975 Feb; 111(2):206-24. PubMed ID: 1089375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unstable breathing rhythms and quasiperiodicity in the pre-Bötzinger complex.
    Del Negro CA; Wilson CG; Butera RJ; Koshiya N; Johnson SM; Smith JC
    Adv Exp Med Biol; 2001; 499():133-8. PubMed ID: 11729867
    [No Abstract]   [Full Text] [Related]  

  • 10. Raphé neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P.
    Ptak K; Yamanishi T; Aungst J; Milescu LS; Zhang R; Richerson GB; Smith JC
    J Neurosci; 2009 Mar; 29(12):3720-37. PubMed ID: 19321769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of respiration: (second of three parts).
    Berger AJ; Mitchell RA; Severinghaus JW
    N Engl J Med; 1977 Jul; 297(3):138-43. PubMed ID: 325413
    [No Abstract]   [Full Text] [Related]  

  • 12. Point:Counterpoint: The parafacial respiratory group (pFRG)/pre-Botzinger complex (preBotC) is the primary site of respiratory rhythm generation in the mammal. Counterpoint: the preBötC is the primary site of respiratory rhythm generation in the mammal.
    Feldman JL; Janczewski WA
    J Appl Physiol (1985); 2006 Jun; 100(6):2096-7; discussion 2097-8, 2103-8. PubMed ID: 16767809
    [No Abstract]   [Full Text] [Related]  

  • 13. Multifunctional laryngeal premotor neurons: their activities during breathing, coughing, sneezing, and swallowing.
    Shiba K; Nakazawa K; Ono K; Umezaki T
    J Neurosci; 2007 May; 27(19):5156-62. PubMed ID: 17494701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanisms underlying respiratory rhythm generation in the lamprey.
    Bongianni F; Mutolo D; Cinelli E; Pantaleo T
    Respir Physiol Neurobiol; 2016 Apr; 224():17-26. PubMed ID: 25220696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational models and emergent properties of respiratory neural networks.
    Lindsey BG; Rybak IA; Smith JC
    Compr Physiol; 2012 Jul; 2(3):1619-70. PubMed ID: 23687564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry.
    Song H; Hayes JA; Vann NC; Wang X; LaMar MD; Del Negro CA
    J Neurosci; 2016 Jul; 36(27):7223-33. PubMed ID: 27383596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology.
    Ikeda K; Kawakami K; Onimaru H; Okada Y; Yokota S; Koshiya N; Oku Y; Iizuka M; Koizumi H
    J Physiol Sci; 2017 Jan; 67(1):45-62. PubMed ID: 27535569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The brainstem respiratory network: an overview of a half century of research.
    Bianchi AL; Gestreau C
    Respir Physiol Neurobiol; 2009 Aug; 168(1-2):4-12. PubMed ID: 19406252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studying respiratory rhythm generation in a developing bird: Hatching a new experimental model using the classic in vitro brainstem-spinal cord preparation.
    Vincen-Brown MA; Whitesitt KC; Quick FG; Pilarski JQ
    Respir Physiol Neurobiol; 2016 Apr; 224():62-70. PubMed ID: 26310580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the respiratory center using isolated brainstem-spinal cord preparations.
    Onimaru H
    Neurosci Res; 1995 Jan; 21(3):183-90. PubMed ID: 7753499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.