These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23254307)

  • 21. Maturation of polarization and luminance contrast sensitivities in cuttlefish (Sepia officinalis).
    Cartron L; Dickel L; Shashar N; Darmaillacq AS
    J Exp Biol; 2013 Jun; 216(Pt 11):2039-45. PubMed ID: 23430993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visual interpolation for contour completion by the European cuttlefish (Sepia officinalis) and its use in dynamic camouflage.
    Zylinski S; Darmaillacq AS; Shashar N
    Proc Biol Sci; 2012 Jun; 279(1737):2386-90. PubMed ID: 22337697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cuttlefish adopt disruptive camouflage under dynamic lighting.
    Drerup C; Dunkley K; How MJ; Herbert-Read JE
    Curr Biol; 2024 Jul; 34(14):3258-3264.e5. PubMed ID: 38959882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage.
    Shohet AJ; Baddeley RJ; Anderson JC; Kelman EJ; Osorio D
    J Exp Biol; 2006 Dec; 209(Pt 23):4717-23. PubMed ID: 17114404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tactical decisions for changeable cuttlefish camouflage: visual cues for choosing masquerade are relevant from a greater distance than visual cues used for background matching.
    Buresch KC; Ulmer KM; Cramer C; McAnulty S; Davison W; Mäthger LM; Hanlon RT
    Biol Bull; 2015 Oct; 229(2):160-6. PubMed ID: 26504156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cuttlefish use visual cues to determine arm postures for camouflage.
    Barbosa A; Allen JJ; Mäthger LM; Hanlon RT
    Proc Biol Sci; 2012 Jan; 279(1726):84-90. PubMed ID: 21561967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A brain atlas for the camouflaging dwarf cuttlefish, Sepia bandensis.
    Montague TG; Rieth IJ; Gjerswold-Selleck S; Garcia-Rosales D; Aneja S; Elkis D; Zhu N; Kentis S; Rubino FA; Nemes A; Wang K; Hammond LA; Emiliano R; Ober RA; Guo J; Axel R
    Curr Biol; 2023 Jul; 33(13):2794-2801.e3. PubMed ID: 37343557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. White reflection from cuttlefish skin leucophores.
    Hanlon RT; Mäthger LM; Bell GRR; Kuzirian AM; Senft SL
    Bioinspir Biomim; 2018 Mar; 13(3):035002. PubMed ID: 29271355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antidepressants Modify Cryptic Behavior in Juvenile Cuttlefish at Environmentally Realistic Concentrations.
    Chabenat A; Knigge T; Bellanger C
    Environ Toxicol Chem; 2021 Sep; 40(9):2571-2577. PubMed ID: 34197652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. To be seen or to hide: visual characteristics of body patterns for camouflage and communication in the Australian giant cuttlefish Sepia apama.
    Zylinski S; How MJ; Osorio D; Hanlon RT; Marshall NJ
    Am Nat; 2011 May; 177(5):681-90. PubMed ID: 21508613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Embryonic development of the camouflaging dwarf cuttlefish, Sepia bandensis.
    Montague TG; Rieth IJ; Axel R
    Dev Dyn; 2021 Dec; 250(12):1688-1703. PubMed ID: 34028136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-level control of adaptive camouflage by European cuttlefish.
    Osorio D; Ménager F; Tyler CW; Darmaillacq AS
    Curr Biol; 2022 Jun; 32(11):2556-2562.e2. PubMed ID: 35508171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage.
    Allen JJ; Mäthger LM; Barbosa A; Hanlon RT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jun; 195(6):547-55. PubMed ID: 19294390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dark scene elements strongly influence cuttlefish camouflage responses in visually cluttered environments.
    Chubb C; Chiao CC; Ulmer K; Buresch K; Birk MA; Hanlon RT
    Vision Res; 2018 Aug; 149():86-101. PubMed ID: 29913248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual asymmetries in cuttlefish during brightness matching for camouflage.
    Schnell AK; Bellanger C; Vallortigara G; Jozet-Alves C
    Curr Biol; 2018 Sep; 28(17):R925-R926. PubMed ID: 30205059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of stimuli shape and polarization in evoking deimatic patterns in the European cuttlefish, Sepia officinalis, under varying turbidity conditions.
    Cartron L; Shashar N; Dickel L; Darmaillacq AS
    Invert Neurosci; 2013 Jun; 13(1):19-26. PubMed ID: 23549755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis.
    Mäthger LM; Roberts SB; Hanlon RT
    Biol Lett; 2010 Oct; 6(5):600-3. PubMed ID: 20392722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A difference in timing for the onset of visual and chemosensory systems during embryonic development in two closely related cuttlefish species.
    Mezrai N; Chiao CC; Dickel L; Darmaillacq AS
    Dev Psychobiol; 2019 Nov; 61(7):1014-1021. PubMed ID: 31172508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changeable cuttlefish camouflage is influenced by horizontal and vertical aspects of the visual background.
    Barbosa A; Litman L; Hanlon RT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Apr; 194(4):405-13. PubMed ID: 18188570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Symmetrical crypsis and asymmetrical signalling in the cuttlefish Sepia officinalis.
    Langridge KV
    Proc Biol Sci; 2006 Apr; 273(1589):959-67. PubMed ID: 16627281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.