BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23254344)

  • 1. Ultrasound assisted interfacial synthesis of gold nanocones.
    Zhang P; He J; Ma X; Gong J; Nie Z
    Chem Commun (Camb); 2013 Feb; 49(10):987-9. PubMed ID: 23254344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of human serum albumin through surface-enhanced Raman scattering using gold "pearl necklace" nanomaterials as substrates.
    Lin ZH; Chen IC; Chang HT
    Chem Commun (Camb); 2011 Jul; 47(25):7116-8. PubMed ID: 21614397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering.
    Zhang K; Yao S; Li G; Hu Y
    Nanoscale; 2015 Feb; 7(6):2659-66. PubMed ID: 25580806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.
    López-Neira JP; Galicia-Hernández JM; Reyes-Coronado A; Pérez E; Castillo-Rivera F
    J Phys Chem A; 2015 May; 119(18):4127-35. PubMed ID: 25860315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-controllable synthesis of surface-enhanced Raman scattering-active gold nanoparticles coated on TiO2.
    Kuo TC; Hsu TC; Liu YC; Yang KH
    Analyst; 2012 Aug; 137(16):3847-53. PubMed ID: 22763981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
    Yokota Y; Ueno K; Misawa H
    Chem Commun (Camb); 2011 Mar; 47(12):3505-7. PubMed ID: 21318204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new route for the synthesis of polyhedral gold mesocages and shape effect in single-particle surface-enhanced Raman spectroscopy.
    Fang J; Lebedkin S; Yang S; Hahn H
    Chem Commun (Camb); 2011 May; 47(18):5157-9. PubMed ID: 21431212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy.
    Jiang YX; Li JF; Wu DY; Yang ZL; Ren B; Hu JW; Chow YL; Tian ZQ
    Chem Commun (Camb); 2007 Nov; (44):4608-10. PubMed ID: 17989807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA reorientation on Au nanoparticles: label-free detection of hybridization by surface enhanced Raman spectroscopy.
    Papadopoulou E; Bell SE
    Chem Commun (Camb); 2011 Oct; 47(39):10966-8. PubMed ID: 21909525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS.
    Polavarapu L; Xu QH
    Langmuir; 2008 Oct; 24(19):10608-11. PubMed ID: 18729527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths.
    Rycenga M; Hou KK; Cobley CM; Schwartz AG; Camargo PH; Xia Y
    Phys Chem Chem Phys; 2009 Jul; 11(28):5903-8. PubMed ID: 19588011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized gold nanoparticles as nanosensor for sensitive and selective detection of silver ions and silver nanoparticles by surface-enhanced Raman scattering.
    Tan E; Yin P; Lang X; Wang X; You T; Guo L
    Analyst; 2012 Sep; 137(17):3925-8. PubMed ID: 22745933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.
    Mahmoud MA
    Langmuir; 2013 May; 29(21):6253-61. PubMed ID: 23647422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new strategy to prepare surface-enhanced Raman scattering-active substrates by electrochemical pulse deposition of gold nanoparticles.
    Mai FD; Hsu TC; Liu YC; Yang KH; Chen BC
    Chem Commun (Camb); 2011 Mar; 47(10):2958-60. PubMed ID: 21243131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.